709 research outputs found

    Digital fabrication of custom interactive objects with rich materials

    Get PDF
    As ubiquitous computing is becoming reality, people interact with an increasing number of computer interfaces embedded in physical objects. Today, interaction with those objects largely relies on integrated touchscreens. In contrast, humans are capable of rich interaction with physical objects and their materials through sensory feedback and dexterous manipulation skills. However, developing physical user interfaces that offer versatile interaction and leverage these capabilities is challenging. It requires novel technologies for prototyping interfaces with custom interactivity that support rich materials of everyday objects. Moreover, such technologies need to be accessible to empower a wide audience of researchers, makers, and users. This thesis investigates digital fabrication as a key technology to address these challenges. It contributes four novel design and fabrication approaches for interactive objects with rich materials. The contributions enable easy, accessible, and versatile design and fabrication of interactive objects with custom stretchability, input and output on complex geometries and diverse materials, tactile output on 3D-object geometries, and capabilities of changing their shape and material properties. Together, the contributions of this thesis advance the fields of digital fabrication, rapid prototyping, and ubiquitous computing towards the bigger goal of exploring interactive objects with rich materials as a new generation of physical interfaces.Computer werden zunehmend in Geräten integriert, mit welchen Menschen im Alltag interagieren. Heutzutage basiert diese Interaktion weitgehend auf Touchscreens. Im Kontrast dazu steht die reichhaltige Interaktion mit physischen Objekten und Materialien durch sensorisches Feedback und geschickte Manipulation. Interfaces zu entwerfen, die diese Fähigkeiten nutzen, ist allerdings problematisch. Hierfür sind Technologien zum Prototyping neuer Interfaces mit benutzerdefinierter Interaktivität und Kompatibilität mit vielfältigen Materialien erforderlich. Zudem sollten solche Technologien zugänglich sein, um ein breites Publikum zu erreichen. Diese Dissertation erforscht die digitale Fabrikation als Schlüsseltechnologie, um diese Probleme zu adressieren. Sie trägt vier neue Design- und Fabrikationsansätze für das Prototyping interaktiver Objekte mit reichhaltigen Materialien bei. Diese ermöglichen einfaches, zugängliches und vielseitiges Design und Fabrikation von interaktiven Objekten mit individueller Dehnbarkeit, Ein- und Ausgabe auf komplexen Geometrien und vielfältigen Materialien, taktiler Ausgabe auf 3D-Objektgeometrien und der Fähigkeit ihre Form und Materialeigenschaften zu ändern. Insgesamt trägt diese Dissertation zum Fortschritt der Bereiche der digitalen Fabrikation, des Rapid Prototyping und des Ubiquitous Computing in Richtung des größeren Ziels, der Exploration interaktiver Objekte mit reichhaltigen Materialien als eine neue Generation von physischen Interfaces, bei

    TableHop: an actuated fabric display using transparent electrodes

    Get PDF
    We present TableHop, a tabletop display that provides controlled self-actuated deformation and vibro-tactile feedback to an elastic fabric surface while retaining the ability for high-resolution visual projection. The TableHop surface is made of a highly stretchable pure spandex fabric that is electrostatically actuated using electrodes mounted on its underside. We use transparent indium tin oxide electrodes and high-voltage modulation to create controlled surface deformations. This setup actuates pixels and creates deformations in the fabric up to ±\pm 5mm. Since the electrodes are transparent, the fabric surface can function as a diffuser for rear-projected visual images, and avoid occlusion by users. Users can touch and interact with the fabric to create expressive interactions as with any fabric based shape-changing interface. By using frequency modulation in the high-voltage circuit, we can also create localised tactile sensations on the user's finger-tip when touching the surface. We provide detailed simulation results of the shape of the surface deformation and the frequency of the haptic vibrations. These results can be used to build prototypes of different sizes and form-factors. We finally create a working prototype of TableHop that has 30×\times40 cm surface area and uses a grid of 3×\times3 transparent electrodes. Our prototype uses a maximum of 2.2 mW and can create tactile vibrations of up to 20 HzHz. TableHop can be scaled to large interactive surfaces and integrated with other objects and devices. TableHop will improve user interaction experience on 2.5D deformable displays

    Under Pressure: Learning to Detect Slip with Barometric Tactile Sensors

    Full text link
    Despite the utility of tactile information, tactile sensors have yet to be widely deployed in industrial robotics settings -- part of the challenge lies in identifying slip and other key events from the tactile data stream. In this paper, we present a learning-based method to detect slip using barometric tactile sensors. Although these sensors have a low resolution, they have many other desirable properties including high reliability and durability, a very slim profile, and a low cost. We are able to achieve slip detection accuracies of greater than 91% while being robust to the speed and direction of the slip motion. Further, we test our detector on two robot manipulation tasks involving common household objects and demonstrate successful generalization to real-world scenarios not seen during training. We show that barometric tactile sensing technology, combined with data-driven learning, is potentially suitable for complex manipulation tasks such as slip compensation.Comment: Submitted to th RoboTac Workshop in the IEEE/RSJ International Conference on Intelligent Robotics and Systems (IROS'21), Prague, Czech Republic, Sept 27- Oct 1, 202

    Sensors for Robotic Hands: A Survey of State of the Art

    Get PDF
    Recent decades have seen significant progress in the field of artificial hands. Most of the surveys, which try to capture the latest developments in this field, focused on actuation and control systems of these devices. In this paper, our goal is to provide a comprehensive survey of the sensors for artificial hands. In order to present the evolution of the field, we cover five year periods starting at the turn of the millennium. At each period, we present the robot hands with a focus on their sensor systems dividing them into categories, such as prosthetics, research devices, and industrial end-effectors.We also cover the sensors developed for robot hand usage in each era. Finally, the period between 2010 and 2015 introduces the reader to the state of the art and also hints to the future directions in the sensor development for artificial hands

    Robot Learning for Manipulation of Deformable Linear Objects

    Get PDF
    Deformable Object Manipulation (DOM) is a challenging problem in robotics. Until recently there has been limited research on the subject, with most robotic manipulation methods being developed for rigid objects. Part of the challenge in DOM is that non-rigid objects require solutions capable of generalizing to changes in shape and mechanical properties. Recently, Machine Learning (ML) has been proven successful in other fields where generalization is important such as computer vision, thus encouraging the application of ML to robotics as well. Notably, Reinforcement Learning (RL) has shown promise in finding control policies for manipulation of rigid objects. However, RL requires large amounts of data that are better satisfied in simulation while deformable objects are inherently more difficult to model and simulate. This thesis presents ReForm, a simulation sandbox for robotic manipulation of Deformable Linear Objects (DLOs) such as cables, ropes, and wires. DLO manipulation is an interesting problem for a variety of applications throughout manufacturing, agriculture, and medicine. Currently, this sandbox includes six shape control tasks, which are classified as explicit when a precise shape is to be achieved, or implicit when the deformation is just a consequence of a more abstract goal, e.g. wrapping a DLO around another object. The proposed simulation environments aim to facilitate comparison and reproducibility of robot learning research. To that end, an RL algorithm is tested on each simulated task providing initial benchmarking results. ReForm is one of three concurrent frameworks to first support DOM problems. This thesis also addresses the problem of DLO state representation for an explicit shape control problem. Moreover, the effects of elastoplastic properties on the RL reward definition are investigated. From a control perspective, DLOs with these properties are particularly challenging to manipulate due to their nonlinear behavior, acting elastic up to a yield point after which they become permanently deformed. A low-dimensional representation from discrete differential geometry is proposed, offering more descriptive shape information than a simple point-cloud while avoiding the need for curve fitting. Empirical results show that this representation leads to a better goal description in the presence of elastoplasticity, preventing the RL algorithm from converging to local minima which correspond to incorrect shapes of the DLO

    Fingertip Fiber Optical Tactile Array with Two-Level Spring Structure

    Get PDF
    Tactile perception is a feature benefiting reliable grasping and manipulation. This paper presents the design of an integrated fingertip force sensor employing an optical fiber based approach where applied forces modulate light intensity. The proposed sensor system is developed to support grasping of a broad range of objects, including those that are hard as well those that are soft. The sensor system is comprised of four sensing elements forming a tactile array integrated with the tip of a finger. We investigate the design configuration of a separate force sensing element with the aim to improve its measurement range. The force measurement of a single tactile element is based on a two-level displacement that is achieved thanks to a hybrid sensing structure made up of a stiff linear and flexible ortho-planar spring. An important outcome of this paper is a miniature tactile fingertip sensor that is capable of perceiving light contact, typically occurring during the initial stages of a grasp, as well as measuring higher forces, commonly present during tight grasps
    corecore