43 research outputs found

    Lower Bounds for the Approximate Degree of Block-Composed Functions

    Get PDF
    We describe a new hardness amplification result for point-wise approximation of Boolean functions by low-degree polynomials. Specifically, for any function f on N bits, define F(x_1,...,x_M) = OMB(f(x_1),...,f(x_M)) to be the function on M*N bits obtained by block-composing f with a function known as ODD-MAX-BIT. We show that, if f requires large degree to approximate to error 2/3 in a certain one-sided sense (captured by a complexity measure known as positive one-sided approximate degree), then F requires large degree to approximate even to error 1-2^{-M}. This generalizes a result of Beigel (Computational Complexity, 1994), who proved an identical result for the special case f=OR. Unlike related prior work, our result implies strong approximate degree lower bounds even for many functions F that have low threshold degree. Our proof is constructive: we exhibit a solution to the dual of an appropriate linear program capturing the approximate degree of any function. We describe several applications, including improved separations between the complexity classes P^{NP} and PP in both the query and communication complexity settings. Our separations improve on work of Beigel (1994) and Buhrman, Vereshchagin, and de Wolf (CCC, 2007)

    Semantic Versus Syntactic Cutting Planes

    Get PDF
    In this paper, we compare the strength of the semantic and syntactic version of the cutting planes proof system. First, we show that the lower bound technique of [22] applies also to semantic cutting planes: the proof system has feasible interpolation via monotone real circuits, which gives an exponential lower bound on lengths of semantic cutting planes refutations. Second, we show that semantic refutations are stronger than syntactic ones. In particular, we give a formula for which any refutation in syntactic cutting planes requires exponential length, while there is a polynomial length refutation in semantic cutting planes. In other words, syntactic cutting planes does not p-simulate semantic cutting planes. We also give two incompatible integer inequalities which require exponential length refutation in syntactic cutting planes. Finally, we pose the following problem, which arises in connection with semantic inference of arity larger than two: can every multivariate non-decreasing real function be expressed as a composition of non-decreasing real functions in two variables

    A Lower Bound for Sampling Disjoint Sets

    Get PDF
    Suppose Alice and Bob each start with private randomness and no other input, and they wish to engage in a protocol in which Alice ends up with a set x subseteq[n] and Bob ends up with a set y subseteq[n], such that (x,y) is uniformly distributed over all pairs of disjoint sets. We prove that for some constant beta0 of the uniform distribution over all pairs of disjoint sets of size sqrt{n}

    Placing Conditional Disclosure of Secrets in the Communication Complexity Universe

    Get PDF
    In the conditional disclosure of secrets (CDS) problem (Gertner et al., J. Comput. Syst. Sci., 2000) Alice and Bob, who hold n-bit inputs x and y respectively, wish to release a common secret z to Carol (who knows both x and y) if and only if the input (x,y) satisfies some predefined predicate f. Alice and Bob are allowed to send a single message to Carol which may depend on their inputs and some shared randomness, and the goal is to minimize the communication complexity while providing information-theoretic security. Despite the growing interest in this model, very few lower-bounds are known. In this paper, we relate the CDS complexity of a predicate f to its communication complexity under various communication games. For several basic predicates our results yield tight, or almost tight, lower-bounds of Omega(n) or Omega(n^{1-epsilon}), providing an exponential improvement over previous logarithmic lower-bounds. We also define new communication complexity classes that correspond to different variants of the CDS model and study the relations between them and their complements. Notably, we show that allowing for imperfect correctness can significantly reduce communication - a seemingly new phenomenon in the context of information-theoretic cryptography. Finally, our results show that proving explicit super-logarithmic lower-bounds for imperfect CDS protocols is a necessary step towards proving explicit lower-bounds against the class AM, or even AM cap coAM - a well known open problem in the theory of communication complexity. Thus imperfect CDS forms a new minimal class which is placed just beyond the boundaries of the "civilized" part of the communication complexity world for which explicit lower-bounds are known

    Non-Deterministic Communication Complexity of Regular Languages

    Full text link
    In this thesis, we study the place of regular languages within the communication complexity setting. In particular, we are interested in the non-deterministic communication complexity of regular languages. We show that a regular language has either O(1) or Omega(log n) non-deterministic complexity. We obtain several linear lower bound results which cover a wide range of regular languages having linear non-deterministic complexity. These lower bound results also imply a result in semigroup theory: we obtain sufficient conditions for not being in the positive variety Pol(Com). To obtain our results, we use algebraic techniques. In the study of regular languages, the algebraic point of view pioneered by Eilenberg (\cite{Eil74}) has led to many interesting results. Viewing a semigroup as a computational device that recognizes languages has proven to be prolific from both semigroup theory and formal languages perspectives. In this thesis, we provide further instances of such mutualism.Comment: Master's thesis, 93 page

    Improved Quantum Communication Complexity Bounds for Disjointness and Equality

    Get PDF
    We prove new bounds on the quantum communication complexity of the disjointness and equality problems. For the case of exact and non-deterministic protocols we show that these complexities are all equal to n+1, the previous best lower bound being n/2. We show this by improving a general bound for non-deterministic protocols of de Wolf. We also give an O(sqrt{n}c^{log^* n})-qubit bounded-error protocol for disjointness, modifying and improving the earlier O(sqrt{n}log n) protocol of Buhrman, Cleve, and Wigderson, and prove an Omega(sqrt{n}) lower bound for a large class of protocols that includes the BCW-protocol as well as our new protocol.Comment: 11 pages LaTe
    corecore