162,453 research outputs found

    Ontology Population in Conversational Recommender System for Smartphone Domain

    Get PDF
    The Conversational recommender system (CRS) is a knowledge-based recommendation system that uses ontology as its knowledge representation.The knowledge of a CRS is based on a real world knowledge base service where information on the topic such as product details and descriptions must always be up-to-date.However, the process of gathering the information is still conducted manually.The process is very time consuming and prone to error.Therefore, automatic or semi-automatic processes that can adapt to update, find and insert information into the knowledge base that matches a given ontology are needed. Hence, this study aims to design a framework for ontology population on Conversational Recommender Systems based on the Functional Requirements as in [4] from tabular web documents so its instantiation as ontology result can substitute manual ontology update on CRS. The framework includes a clustering process that employs the Bi-Layer K-Means Clustering Algorithm as a part of knowledge acquisition. To reach the objective, it is necessary to analyze and check the individual consistency of the resulting ontology. Another aim of this study is to analyze the resulting ontology still suitable according to CRS ontology requirements by checking the CRS Ontology Requirements.The experiment is conducted using data from www.gsmarena.com through a crawler engine. There are four steps in an ontology population process: Document Crawling, Identification of the page (individuals, attributes and values), KnowledgeAcquisition, and OWL Ontology Export. Using input from the tabular web document and developing OWL ontology export that mapping the instances and relations, the result shows that the specifications included in the Weak Clustering, Reasonable Clustering and strong clustering categories can be recommended for the Conversational Recommender System ontology. Analysis of consistency checking shows that the ontology remains consistent and suitable for the CRS ontology requirement

    Ontology Population via NLP Techniques in Risk Management

    Get PDF
    In this paper we propose an NLP-based method for Ontology Population from texts and apply it to semi automatic instantiate a Generic Knowledge Base (Generic Domain Ontology) in the risk management domain. The approach is semi-automatic and uses a domain expert intervention for validation. The proposed approach relies on a set of Instances Recognition Rules based on syntactic structures, and on the predicative power of verbs in the instantiation process. It is not domain dependent since it heavily relies on linguistic knowledge. A description of an experiment performed on a part of the ontology of the PRIMA project (supported by the European community) is given. A first validation of the method is done by populating this ontology with Chemical Fact Sheets from Environmental Protection Agency . The results of this experiment complete the paper and support the hypothesis that relying on the predicative power of verbs in the instantiation process improves the performance.Information Extraction, Instance Recognition Rules, Ontology Population, Risk Management, Semantic Analysis

    The Requirements for Ontologies in Medical Data Integration: A Case Study

    Full text link
    Evidence-based medicine is critically dependent on three sources of information: a medical knowledge base, the patients medical record and knowledge of available resources, including where appropriate, clinical protocols. Patient data is often scattered in a variety of databases and may, in a distributed model, be held across several disparate repositories. Consequently addressing the needs of an evidence-based medicine community presents issues of biomedical data integration, clinical interpretation and knowledge management. This paper outlines how the Health-e-Child project has approached the challenge of requirements specification for (bio-) medical data integration, from the level of cellular data, through disease to that of patient and population. The approach is illuminated through the requirements elicitation and analysis of Juvenile Idiopathic Arthritis (JIA), one of three diseases being studied in the EC-funded Health-e-Child project.Comment: 6 pages, 1 figure. Presented at the 11th International Database Engineering & Applications Symposium (Ideas2007). Banff, Canada September 200

    Ontology-based Information Extraction with SOBA

    Get PDF
    In this paper we describe SOBA, a sub-component of the SmartWeb multi-modal dialog system. SOBA is a component for ontologybased information extraction from soccer web pages for automatic population of a knowledge base that can be used for domainspecific question answering. SOBA realizes a tight connection between the ontology, knowledge base and the information extraction component. The originality of SOBA is in the fact that it extracts information from heterogeneous sources such as tabular structures, text and image captions in a semantically integrated way. In particular, it stores extracted information in a knowledge base, and in turn uses the knowledge base to interpret and link newly extracted information with respect to already existing entities

    Automatic extraction of knowledge from web documents

    Get PDF
    A large amount of digital information available is written as text documents in the form of web pages, reports, papers, emails, etc. Extracting the knowledge of interest from such documents from multiple sources in a timely fashion is therefore crucial. This paper provides an update on the Artequakt system which uses natural language tools to automatically extract knowledge about artists from multiple documents based on a predefined ontology. The ontology represents the type and form of knowledge to extract. This knowledge is then used to generate tailored biographies. The information extraction process of Artequakt is detailed and evaluated in this paper

    A Semantic Approach To Autonomous Mixing

    Get PDF

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web
    • 

    corecore