44 research outputs found

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing

    Gerenciamento energeticamente eficiente de memória para multiprocessamento em chip explorando múltiplas scratchpads

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Ciência da ComputaçãoA fim de proporcionar a alta capacidade de processamento requerida pelos dispositivos eletrônicos pessoais, sem ultrapassar os limites aceitáveis de potência e de consumo de energia, os sistemas em chip (SoCs) adotam o multiprocessamento. Para tanto, os SoCs possuem 2, 4 ou mais processadores, cada um com caches L1 privativas, conectados por meio de um barramento. Como o espaço de endereçamento visto pelos processadores é único, a programação do sistema pode assumir o modelo de memória compartilhada. A coerência entre as caches geralmente é assegurada pelo protocolo snooping. Para tirar proveito do paralelismo dos SoCs multiprocessados (MPSoCs), aplicações são desenvolvidas com uso de múltiplas threads executando concorrentemente. Neste contexto, observa-se que os dados de pilha de uma dada thread são acessados somente pelo processador no qual a thread está executando. Desta forma, a relocação da pilha para memória scratchpad (SPM) pode ser explorada para reduzir a energia do subsistema de memória. Esta redução advém não apenas da menor energia gasta em cada acesso à pilha, mas também da redução das faltas nas caches L1 de dados e da penalidade imposta pelo protocolo snooping. No presente trabalho propõe-se uma técnica para o gerenciamento dinâmico de dados de pilha em múltiplas SPMs, visando redução de energia no subsistema de memória em MPSoCs. A técnica utiliza um gerenciador totalmente em software, o qual é responsável por alocar e desalocar os dados de pilha de thread em SPM. A utilização da técnica dispensa intervenção do programador, pois as alterações necessárias no código da aplicação são realizadas por um compilador adaptado. Foram obtidos resultados experimentais através da simulação de 400 aplicações geradas aleatoriamente, assumindo-se 20 plataformas multiprocessadas, totalizando 8000 casos de uso. Os resultados mostram que, variando-se o perfil das aplicações quanto à proporção de acessos a dados de pilha, a técnica proporciona reduções de energia no subsistema de memória entre 11% e 20%, em média, para plataformas com caches L1 de 32KB, e reduções entre 14,7% e 25,9%, em média, para plataformas com caches L1 de 64KB. Para plataformas com caches L1 de menor capacidade, a redução de energia é menor pois a penalidade de faltas nas caches L1 de instruções imposta pelo gerenciador torna-se relevante

    Trace Oblivious Program Execution

    Get PDF
    The big data era has dramatically transformed our lives; however, security incidents such as data breaches can put sensitive data (e.g. photos, identities, genomes) at risk. To protect users' data privacy, there is a growing interest in building secure cloud computing systems, which keep sensitive data inputs hidden, even from computation providers. Conceptually, secure cloud computing systems leverage cryptographic techniques (e.g., secure multiparty computation) and trusted hardware (e.g. secure processors) to instantiate a “secure” abstract machine consisting of a CPU and encrypted memory, so that an adversary cannot learn information through either the computation within the CPU or the data in the memory. Unfortunately, evidence has shown that side channels (e.g. memory accesses, timing, and termination) in such a “secure” abstract machine may potentially leak highly sensitive information, including cryptographic keys that form the root of trust for the secure systems. This thesis broadly expands the investigation of a research direction called trace oblivious computation, where programming language techniques are employed to prevent side channel information leakage. We demonstrate the feasibility of trace oblivious computation, by formalizing and building several systems, including GhostRider, which is a hardware-software co-design to provide a hardware-based trace oblivious computing solution, SCVM, which is an automatic RAM-model secure computation system, and ObliVM, which is a programming framework to facilitate programmers to develop applications. All of these systems enjoy formal security guarantees while demonstrating a better performance than prior systems, by one to several orders of magnitude

    A survey of techniques for reducing interference in real-time applications on multicore platforms

    Get PDF
    This survey reviews the scientific literature on techniques for reducing interference in real-time multicore systems, focusing on the approaches proposed between 2015 and 2020. It also presents proposals that use interference reduction techniques without considering the predictability issue. The survey highlights interference sources and categorizes proposals from the perspective of the shared resource. It covers techniques for reducing contentions in main memory, cache memory, a memory bus, and the integration of interference effects into schedulability analysis. Every section contains an overview of each proposal and an assessment of its advantages and disadvantages.This work was supported in part by the Comunidad de Madrid Government "Nuevas Técnicas de Desarrollo de Software de Tiempo Real Embarcado Para Plataformas. MPSoC de Próxima Generación" under Grant IND2019/TIC-17261

    TIME-PREDICTABLE EXECUTION OF EMBEDDED SOFTWARE ON MULTI-CORE PLATFORMS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Hierarchical Transactions for Hardware/Software Cosynthesis

    Get PDF
    Modern heterogeneous devices provide of a variety of computationally diverse components holding tremendous performance and power capability. Hardware-software cosynthesis offers system-level synthesis and optimization opportunities to realize the potential of these evolving architectures. Efficiently coordinating high-throughput data to make use of available computational resources requires a myriad of distributed local memories, caching structures, and data motion resources. In fact, storage, caching, and data transfer components comprise the majority of silicon real estate. Conventional automated approaches, unfortunately, do not effectively represent applications in a way that captures data motion and state management which dictate dominant system costs. Consequently, existing cosynthesis methods suffer from poor utility of computational resources. Automated cosynthesis tailored towards memory-centric optimizations can address the challenge, adapting partitioning, scheduling, mapping, and binding techniques to maximize overall system utility.This research presents a novel hierarchical transaction model that formalizes state and control management through an abstract data/control encapsulation semantic. It is designed from the ground-up to enable efficient synthesis across heterogeneous system components, with an emphasis on memory capacity constraints. It intrinsically encourages a high degree of concurrency and latency tolerance, and provides verification tools to ensure correctness. A unique data/execution hierarchical encapsulation framework guarantees scalable analysis, supporting a novel concept of state and control mobility. A front-end language allows concise expression of designer intent, and is structured with synthesis in mind. Designers express families of valid executions in a minimal format through high-level dependencies, type systems, and computational relationships, allowing synthesis tools to manage lower-level details. This dissertation introduces and exercises the model, discussing language construction, demonstrating control and data-dominated applications, and presenting a synthesis path that exhibits near-linear scalability with problem size

    Transactional memory on heterogeneous architectures

    Get PDF
    Tesis Leida el 9 de Marzo de 2018.Si observamos las necesidades computacionales de hoy, y tratamos de predecir las necesidades del mañana, podemos concluir que el procesamiento heterogéneo estará presente en muchos dispositivos y aplicaciones. El motivo es lógico: algoritmos diferentes y datos de naturaleza diferente encajan mejor en unos dispositivos de cómputo que en otros. Pongamos como ejemplo una tecnología de vanguardia como son los vehículos inteligentes. En este tipo de aplicaciones la computación heterogénea no es una opción, sino un requisito. En este tipo de vehículos se recolectan y analizan imágenes, tarea para la cual los procesadores gráficos (GPUs) son muy eficientes. Muchos de estos vehículos utilizan algoritmos sencillos, pero con grandes requerimientos de tiempo real, que deben implementarse directamente en hardware utilizando FPGAs. Y, por supuesto, los procesadores multinúcleo tienen un papel fundamental en estos sistemas, tanto organizando el trabajo de otros coprocesadores como ejecutando tareas en las que ningún otro procesador es más eficiente. No obstante, los procesadores tampoco siguen siendo dispositivos homogéneos. Los diferentes núcleos de un procesador pueden ofrecer diferentes características en términos de potencia y consumo energético que se adapten a las necesidades de cómputo de la aplicación. Programar este conjunto de dispositivos es una tarea compleja, especialmente en su sincronización. Habitualmente, esta sincronización se basa en operaciones atómicas, ejecución y terminación de kernels, barreras y señales. Con estas primitivas de sincronización básicas se pueden construir otras estructuras más complejas. Sin embargo, la programación de estos mecanismos es tediosa y propensa a fallos. La memoria transaccional (TM por sus siglas en inglés) se ha propuesto como un mecanismo avanzado a la vez que simple para garantizar la exclusión mutua

    Optimization Techniques for Parallel Programming of Embedded Many-Core Computing Platforms

    Get PDF
    Nowadays many-core computing platforms are widely adopted as a viable solution to accelerate compute-intensive workloads at different scales, from low-cost devices to HPC nodes. It is well established that heterogeneous platforms including a general-purpose host processor and a parallel programmable accelerator have the potential to dramatically increase the peak performance/Watt of computing architectures. However the adoption of these platforms further complicates application development, whereas it is widely acknowledged that software development is a critical activity for the platform design. The introduction of parallel architectures raises the need for programming paradigms capable of effectively leveraging an increasing number of processors, from two to thousands. In this scenario the study of optimization techniques to program parallel accelerators is paramount for two main objectives: first, improving performance and energy efficiency of the platform, which are key metrics for both embedded and HPC systems; second, enforcing software engineering practices with the aim to guarantee code quality and reduce software costs. This thesis presents a set of techniques that have been studied and designed to achieve these objectives overcoming the current state-of-the-art. As a first contribution, we discuss the use of OpenMP tasking as a general-purpose programming model to support the execution of diverse workloads, and we introduce a set of runtime-level techniques to support fine-grain tasks on high-end many-core accelerators (devices with a power consumption greater than 10W). Then we focus our attention on embedded computer vision (CV), with the aim to show how to achieve best performance by exploiting the characteristics of a specific application domain. To further reduce the power consumption of parallel accelerators beyond the current technological limits, we describe an approach based on the principles of approximate computing, which implies modification to the program semantics and proper hardware support at the architectural level
    corecore