63 research outputs found

    Distributed-memory large deformation diffeomorphic 3D image registration

    Full text link
    We present a parallel distributed-memory algorithm for large deformation diffeomorphic registration of volumetric images that produces large isochoric deformations (locally volume preserving). Image registration is a key technology in medical image analysis. Our algorithm uses a partial differential equation constrained optimal control formulation. Finding the optimal deformation map requires the solution of a highly nonlinear problem that involves pseudo-differential operators, biharmonic operators, and pure advection operators both forward and back- ward in time. A key issue is the time to solution, which poses the demand for efficient optimization methods as well as an effective utilization of high performance computing resources. To address this problem we use a preconditioned, inexact, Gauss-Newton- Krylov solver. Our algorithm integrates several components: a spectral discretization in space, a semi-Lagrangian formulation in time, analytic adjoints, different regularization functionals (including volume-preserving ones), a spectral preconditioner, a highly optimized distributed Fast Fourier Transform, and a cubic interpolation scheme for the semi-Lagrangian time-stepping. We demonstrate the scalability of our algorithm on images with resolution of up to 102431024^3 on the "Maverick" and "Stampede" systems at the Texas Advanced Computing Center (TACC). The critical problem in the medical imaging application domain is strong scaling, that is, solving registration problems of a moderate size of 2563256^3---a typical resolution for medical images. We are able to solve the registration problem for images of this size in less than five seconds on 64 x86 nodes of TACC's "Maverick" system.Comment: accepted for publication at SC16 in Salt Lake City, Utah, USA; November 201

    Efficient algorithms for geodesic shooting in diffeomorphic image registration

    Get PDF
    Diffeomorphic image registration is a common problem in medical image analysis. Here, one searches for a diffeomorphic deformation that maps one image (the moving or template image) onto another image (the fixed or reference image). We can formulate the search for such a map as a PDE constrained optimization problem. These types of problems are computationally expensive. This gives rise to the need for efficient algorithms. After introducing the PDE constrained optimization problem, we derive the first and second order optimality conditions. We discretize the problem using a pseudo-spectral discretization in space and consider Heun's method and the semi-Lagrangian method for the time integration of the PDEs that appear in the optimality system. To solve this optimization problem, we consider an L-BFGS and an inexact Gauss-Newton-Krylov method. To reduce the cost of solving the linear system that arises in Newton-type methods, we investigate different preconditioners. They exploit the structure of the Hessian, and use algorithms to efficiently compute an approximation to its inverse. Further, we build the preconditioners on a coarse grid to further reduce computational costs. The different methods are evaluated for two-dimensional image data (real and synthetic). We study the spectrum of the different building blocks that appear in the Hessian. It is demonstrated that low rank preconditioners are able to significantly reduce the number of iterations needed to solve the linear system in Newton-type optimizers. We then compare different optimization methods based on their overall performance. This includes the accuracy and time-to-solution. L-BFGS turns out to be the best method, in terms of runtime, if we solve solving for large gradient tolerances. If we are interested in computing accurate solutions with a small gradient norm, an inexact Gauss-Newton-Krylov optimizer with the regularization term as preconditioner performs best

    CLAIRE -- Parallelized Diffeomorphic Image Registration for Large-Scale Biomedical Imaging Applications

    Full text link
    We study the performance of CLAIRE -- a diffeomorphic multi-node, multi-GPU image-registration algorithm, and software -- in large-scale biomedical imaging applications with billions of voxels. At such resolutions, most existing software packages for diffeomorphic image registration are prohibitively expensive. As a result, practitioners first significantly downsample the original images and then register them using existing tools. Our main contribution is an extensive analysis of the impact of downsampling on registration performance. We study this impact by comparing full-resolution registrations obtained with CLAIRE to lower-resolution registrations for synthetic and real-world imaging datasets. Our results suggest that registration at full resolution can yield a superior registration quality -- but not always. For example, downsampling a synthetic image from 102431024^3 to 2563256^3 decreases the Dice coefficient from 92% to 79%. However, the differences are less pronounced for noisy or low-contrast high-resolution images. CLAIRE allows us not only to register images of clinically relevant size in a few seconds but also to register images at unprecedented resolution in a reasonable time. The highest resolution considered is CLARITY images of size 2816×3016×11622816\times3016\times1162. To the best of our knowledge, this is the first study on image registration quality at such resolutions.Comment: 32 pages, 9 tables, 8 figure
    • …
    corecore