1,141 research outputs found

    NOVEL STRATEGIES FOR THE MORPHOLOGICAL AND BIOMECHANICAL ANALYSIS OF THE CARDIAC VALVES BASED ON VOLUMETRIC CLINICAL IMAGES

    Get PDF
    This work was focused on the morphological and biomechanical analysis of the heart valves exploiting the volumetric data. Novel methods were implemented to perform cardiac valve structure and sub-structure segmentation by defining long axis planes evenly rotated around the long axis of the valve. These methods were exploited to successfully reconstruct the 3D geometry of the mitral, tricuspid and aortic valve structures. Firstly, the reconstructed models were used for the morphological analysis providing a detailed description of the geometry of the valve structures, also computing novel indexes that could improve the description of the valvular apparatus and help their clinical assessment. Additionally, the models obtained for the mitral valve complex were adopted for the development of a novel biomechanical approach to simulate the systolic closure of the valve, relying on highly-efficient mass-spring models thus obtaining a good trade-off between the accuracy and the computational cost of the numerical simulations. In specific: \u2022 First, an innovative and semi-automated method was implemented to generate the 3D model of the aortic valve and of its calcifications, to quantitively describe its 3D morphology and to compute the anatomical aortic valve area (AVA) based on multi-detector computed tomography images. The comparison of the obtained results vs. effective AVA measurements showed a good correlation. Additionally, these methods accounted for asymmetries or anatomical derangements, which would be difficult to correctly capture through either effective AVA or planimetric AVA. \u2022 Second, a tool to quantitively assess the geometry of the tricuspid valve during the cardiac cycle using multidetector CT was developed, in particular focusing on the 3D spatial relationship between the tricuspid annulus and the right coronary artery. The morphological analysis of the annulus and leaflets confirmed data reported in literature. The qualitative and quantitative analysis of the spatial relationship could standardize the analysis protocol and be pivotal in the procedure planning of the percutaneous device implantation that interact with the tricuspid annulus. \u2022 Third, we simulated the systolic closure of three patient specific mitral valve models, derived from CMR datasets, by means of the mass spring model approach. The comparison of the obtained results vs. finite element analyses (considered as the gold-standard) was performed tuning the parameters of the mass spring model, so to obtain the best trade-off between computational expense and accuracy of the results. A configuration mismatch between the two models lower than two times the in-plane resolution of starting imaging data was yielded using a mass spring model set-up that requires, on average, only ten minutes to simulate the valve closure. \u2022 Finally, in the last chapter, we performed a comprehensive analysis which aimed at exploring the morphological and mechanical changes induced by the myxomatous pathologies in the mitral valve tissue. The analysis of mitral valve thickness confirmed the data and patterns reported in literature, while the mechanical test accurately described the behavior of the pathological tissue. A preliminary implementation of this data into finite element simulations suggested that the use of more reliable patient-specific and pathology-specific characterization of the model could improve the realism and the accuracy of the biomechanical simulations

    Modeling of Intraluminal Surfaces of Thoracic Aortas

    Get PDF
    Vascular diseases are getting more and more common as a result of modern-day lifestyle and the fact that the population is getting older. One of the newest treatments for vascular diseases such as aneurysms and dissections is endovascular repair with endografting. This treatment uses a fabric covered metallic structure that is implanted using a minimally invasive approach to serve as an artificial vessel in a damaged region. To ensure that the interventions are successful, the endograft must be placed in the correct location, and be designed to sustain the hostile biological, chemical, and mechanical conditions in the body for many years.To accurately describe the complex mechanical conditions of the intraluminal surfaces of diseased blood vessels inside the body, this thesis presented a segmentation and quantification methodology for a natural and intuitive vessel surface description. The thesis also included some important clinical applications, all based on non-invasive temporal imaging. The results emphasized the need for explicit surface curvature quantification, as compared to relying solely on centerline curvature and estimation methods. Methods for preoperative prediction of endograft malapposition severity based on geometric analysis of thoracic aortic surfaces were introduced. Finally, a multiaxial dynamic analysis of cardiac induced thoracic aortic surface deformation showed how a thoracic endovascular aortic repair is a↵ecting the deformations of the thoracic aorta.Thus, the work presented in this thesis contributes by giving surgeons a tool to use in their treatment planning to minimize complications. Moreover, this method provides more nuanced boundary conditions so that endograft manufacturers can improve their designs to improve the quality of life for the treated patients

    Digital Twin of Cardiovascular Systems

    Get PDF
    Patient specific modelling using numerical methods is widely used in understanding diseases and disorders. It produces medical analysis based on the current state of patient’s health. Concurrently, as a parallel development, emerging data driven Artificial Intelligence (AI) has accelerated patient care. It provides medical analysis using algorithms that rely upon knowledge from larger human population data. AI systems are also known to have the capacity to provide a prognosis with overallaccuracy levels that are better than those provided by trained professionals. When these two independent and robust methods are combined, the concept of human digital twins arise. A Digital Twin is a digital replica of any given system or process. They combine knowledge from general data with subject oriented knowledge for past, current and future analyses and predictions. Assumptions made during numerical modelling are compensated using knowledge from general data. For humans, they can provide an accurate current diagnosis as well as possible future outcomes. This allows forprecautions to be taken so as to avoid further degradation of patient’s health.In this thesis, we explore primary forms of human digital twins for the cardiovascular system, that are capable of replicating various aspects of the cardiovascular system using different types of data. Since different types of medical data are available, such as images, videos and waveforms, and the kinds of analysis required may be offline or online in nature, digital twin systems should be uniquely designed to capture each type of data for different kinds of analysis. Therefore, passive, active and semi-active digital twins, as the three primary forms of digital twins, for different kinds of applications are proposed in this thesis. By the virtue of applications and the kind of data involved ineach of these applications, the performance and importance of human digital twins for the cardiovascular system are demonstrated. The idea behind these twins is to allow for the application of the digital twin concept for online analysis, offline analysis or a combination of the two in healthcare. In active digital twins active data, such as signals, is analysed online in real-time; in semi-active digital twin some of the components being analysed are active but the analysis itself is carried out offline; and finally, passive digital twins perform offline analysis of data that involves no active component.For passive digital twin, an automatic workflow to calculate Fractional Flow Reserve (FFR) is proposed and tested on a cohort of 25 patients with acceptable results. For semi-active digital twin, detection of carotid stenosis and its severity using face videos is proposed and tested with satisfactory results from one carotid stenosis patient and a small cohort of healthy adults. Finally, for the active digital twin, an enabling model is proposed using inverse analysis and its application in the detection of Abdominal Aortic Aneurysm (AAA) and its severity, with the help of a virtual patient database. This enabling model detected artificially generated AAA with an accuracy as high as 99.91% and classified its severity with acceptable accuracy of 97.79%. Further, for active digital twin, a truly active model is proposed for continuous cardiovascular state monitoring. It is tested on a small cohort of five patients from a publicly available database for three 10-minute periods, wherein this model satisfactorily replicated and forecasted patients’ cardiovascular state. In addition to the three forms of human digital twins for the cardiovascular system, an additional work on patient prioritisation in pneumonia patients for ITU care using data-driven digital twin is also proposed. The severity indices calculated by these models are assessed using the standard benchmark of Area Under Receiving Operating Characteristic Curve (AUROC). The results indicate that using these models, the ITU and mechanical ventilation can be prioritised correctly to an AUROC value as high as 0.89

    Diagnostic Accuracy of a Novel On-site Virtual Fractional Flow Reserve Parallel Computing System

    Get PDF
    PURPOSE: To evaluate the diagnostic accuracy of a novel on-site virtual fractional flow reserve (vFFR) derived from coronary computed tomography angiography (CTA). MATERIALS AND METHODS: We analyzed 100 vessels from 57 patients who had undergone CTA followed by invasive FFR during coronary angiography. Coronary lumen segmentation and three-dimensional reconstruction were conducted using a completely automated algorithm, and parallel computing based vFFR prediction was performed. Lesion-specific ischemia based on FFR was defined as significant at ≤0.8, as well as ≤0.75, and obstructive CTA stenosis was defined that ≥50%. The diagnostic performance of vFFR was compared to invasive FFR at both ≤0.8 and ≤0.75. RESULTS: The average computation time was 12 minutes per patient. The correlation coefficient (r) between vFFR and invasive FFR was 0.75 [95% confidence interval (CI) 0.65 to 0.83], and Bland-Altman analysis showed a mean bias of 0.005 (95% CI -0.011 to 0.021) with 95% limits of agreement of -0.16 to 0.17 between vFFR and FFR. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were 78.0%, 87.1%, 72.5%, 58.7%, and 92.6%, respectively, using the FFR cutoff of 0.80. They were 87.0%, 95.0%, 80.0%, 54.3%, and 98.5%, respectively, with the FFR cutoff of 0.75. The area under the receiver-operating characteristics curve of vFFR versus obstructive CTA stenosis was 0.88 versus 0.61 for the FFR cutoff of 0.80, respectively; it was 0.94 versus 0.62 for the FFR cutoff of 0.75. CONCLUSION: Our novel, fully automated, on-site vFFR technology showed excellent diagnostic performance for the detection of lesion-specific ischemia.ope

    Novel mesh generation method for accurate image-based computational modelling of blood vessels

    Get PDF

    Computational fluid dynamics indicators to improve cardiovascular pathologies

    Get PDF
    In recent years, the study of computational hemodynamics within anatomically complex vascular regions has generated great interest among clinicians. The progress in computational fluid dynamics, image processing and high-performance computing haveallowed us to identify the candidate vascular regions for the appearance of cardiovascular diseases and to predict how this disease may evolve. Medicine currently uses a paradigm called diagnosis. In this thesis we attempt to introduce into medicine the predictive paradigm that has been used in engineering for many years. The objective of this thesis is therefore to develop predictive models based on diagnostic indicators for cardiovascular pathologies. We try to predict the evolution of aortic abdominal aneurysm, aortic coarctation and coronary artery disease in a personalized way for each patient. To understand how the cardiovascular pathology will evolve and when it will become a health risk, it is necessary to develop new technologies by merging medical imaging and computational science. We propose diagnostic indicators that can improve the diagnosis and predict the evolution of the disease more efficiently than the methods used until now. In particular, a new methodology for computing diagnostic indicators based on computational hemodynamics and medical imaging is proposed. We have worked with data of anonymous patients to create real predictive technology that will allow us to continue advancing in personalized medicine and generate more sustainable health systems. However, our final aim is to achieve an impact at a clinical level. Several groups have tried to create predictive models for cardiovascular pathologies, but they have not yet begun to use them in clinical practice. Our objective is to go further and obtain predictive variables to be used practically in the clinical field. It is to be hoped that in the future extremely precise databases of all of our anatomy and physiology will be available to doctors. These data can be used for predictive models to improve diagnosis or to improve therapies or personalized treatments.En els últims anys, l'estudi de l'hemodinàmica computacional en regions vasculars anatòmicament complexes ha generat un gran interès entre els clínics. El progrés obtingut en la dinàmica de fluids computacional, en el processament d'imatges i en la computació d'alt rendiment ha permès identificar regions vasculars on poden aparèixer malalties cardiovasculars, així com predir-ne l'evolució. Actualment, la medicina utilitza un paradigma anomenat diagnòstic. En aquesta tesi s'intenta introduir en la medicina el paradigma predictiu utilitzat des de fa molts anys en l'enginyeria. Per tant, aquesta tesi té com a objectiu desenvolupar models predictius basats en indicadors de diagnòstic de patologies cardiovasculars. Tractem de predir l'evolució de l'aneurisma d'aorta abdominal, la coartació aòrtica i la malaltia coronària de forma personalitzada per a cada pacient. Per entendre com la patologia cardiovascular evolucionarà i quan suposarà un risc per a la salut, cal desenvolupar noves tecnologies mitjançant la combinació de les imatges mèdiques i la ciència computacional. Proposem uns indicadors que poden millorar el diagnòstic i predir l'evolució de la malaltia de manera més eficient que els mètodes utilitzats fins ara. En particular, es proposa una nova metodologia per al càlcul dels indicadors de diagnòstic basada en l'hemodinàmica computacional i les imatges mèdiques. Hem treballat amb dades de pacients anònims per crear una tecnologia predictiva real que ens permetrà seguir avançant en la medicina personalitzada i generar sistemes de salut més sostenibles. Però el nostre objectiu final és aconseguir un impacte en l¿àmbit clínic. Diversos grups han tractat de crear models predictius per a les patologies cardiovasculars, però encara no han començat a utilitzar-les en la pràctica clínica. El nostre objectiu és anar més enllà i obtenir variables predictives que es puguin utilitzar de forma pràctica en el camp clínic. Es pot preveure que en el futur tots els metges disposaran de bases de dades molt precises de tota la nostra anatomia i fisiologia. Aquestes dades es poden utilitzar en els models predictius per millorar el diagnòstic o per millorar teràpies o tractaments personalitzats.Postprint (published version
    corecore