67 research outputs found

    Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia

    Get PDF
    The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor's radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit

    Impact of a Tropical Cyclone on Terrestrial Inputs and Bio-Optical Properties in Princess Charlotte Bay (Great Barrier Reef Lagoon)

    Get PDF
    In January 2013, tropical cyclone Oswald caused widespread flooding in the North-East coast of Australia, and large and highly episodic inputs into Princess Charlotte Bay (PCB, northern Great Barrier Reef). Freshwater outflows from the Normanby and Kennedy rivers, the two main rivers draining the adjacent catchments, resulted in drastic changes in physical, biogeochemical and optical properties within PCB. On 31 January, 2 days after the peak riverine discharge from the Normanby river, nutrients and dissolved organic matter contents peaked under the influence of large outflows from the Kennedy river into the western section of the bay (5.8 μM for dissolved inorganic nitrogen, 6.9 g m−3 for dissolved organic carbon and 6.1 m−1 for the colored dissolved organic matter absorption coefficient at 412 nm). In the eastern section of the bay, the situation appeared more ‘mixed’, with a suspended solids concentration reaching 23.1 g m−3 close to the Normanby river mouth. The main phytoplankton bloom occurred in the transition zone between the Kennedy and Normanby flood plumes, and was dominated by diatoms with a chlorophyll a concentration reaching 14.6 mg m−3. This study highlights the need to better describe the critical spatial and temporal scales of variability of key biogeochemical and optical properties after a major flood event. The data collected is key to improve the accuracy of ocean color remote sensing algorithms and regional biogeochemical budgets following highly episodic inputs

    Identifying Metocean Drivers of Turbidity Using 18 Years of MODIS Satellite Data: Implications for Marine Ecosystems under Climate Change

    Get PDF
    Turbidity impacts the growth and productivity of marine benthic habitats due to light limitation. Daily/monthly synoptic and tidal influences often drive turbidity fluctuations, however, our understanding of what drives turbidity across seasonal/interannual timescales is often limited, thus impeding our ability to forecast climate change impacts to ecologically significant habitats. Here, we analysed long term (18-year) MODIS-aqua data to derive turbidity and the associated meteorological and oceanographic (metocean) processes in an arid tropical embayment (Exmouth Gulf in Western Australia) within the eastern Indian Ocean. We found turbidity was associated with El Niño Southern Oscillation (ENSO) cycles as well as Indian Ocean Dipole (IOD) events. Winds from the adjacent terrestrial region were also associated with turbidity and an upward trend in turbidity was evident in the body of the gulf over the 18 years. Our results identify hydrological processes that could be affected by global climate cycles undergoing change and reveal opportunities for managers to reduce impacts to ecologically important ecosystems

    Exploring Himawari-8 geostationary observations for the advanced coastal monitoring of the Great Barrier Reef

    Get PDF
    Larissa developed an algorithm to enable water-quality assessment within the Great Barrier Reef (GBR) using weather satellite observations collected every 10 minutes. This unprecedented temporal resolution records the dynamic nature of water quality fluctuations for the entire GBR, with applications for improved monitoring and management

    Phytoplankton and Carbon Dynamics in the Estuarine-Coastal Waters of the Northern Gulf of Mexico from Field Data and Ocean Color Remote Sensing

    Get PDF
    In this study, phytoplankton community and carbon dynamics were examined in the optically complex estuarine-coastal regions of the northern Gulf of Mexico (nGOM) from field and satellite ocean color observations. As part of this study, bio-optical ocean color algorithms for i) dissolved organic carbon (DOC), ii) phytoplankton pigment composition, iii) adaptive estimation of Chl a and iv) phytoplankton size fractions were developed to facilitate the study of biogeochemical cycling in the nGOM. The phytoplankton based algorithms were applied to Sentinel 3A/B-OLCI oean color data to assess phytoplankton community dynamics to extreme river discharge conditions as well as hurricanes in the nGOM. This study revealed that the effects of hurricanes on phytoplankton community dynamics were dependent on background nutrient conditions, as well as the intensity, track and translational speed of storms: 1) Strong flooding associated with Hurricane Harvey (2017) shifted the dominance of phytoplankton community in Galveston Bay from cyanobacteria and dinoflagellate to diatom and chlorophyte; 2) high levels of organic matter delivered from estuaries to shelf waters after Hurricane Michael (2018) fueled a red tide mixed with coccolithophore bloom in the nGoM; 3) the physical and chemical environment after hurricanes are favorable for the growth and dominance of coccolithophores in shelf waters. Further, microphytoplankton mainly controlled by freshwater inflows showed dominance in estuaries of the nGoM, with highest/lowest values observed in spring/fall. In comparison, phytoplankton size fraction (PSF) dynamics in the midshelf and offshore waters of the nGoM are strongly influenced by Loop Current (LC) expansion, and eddy shedding with highest picophytoplankton fraction observed in the warm waters of LC. DOC dynamics was studied using an empirical algorithm that was developed and applied to multiple satellite sensors (Landsat 5 TM and MODIS-Aqua) to assess multi-decadal (1985-2012) DOC trends in Barataria Basin. The linkages between DOC and environmenal variations were investigated. The relationships between satellite-derived DOC and land cover variations (1985–2011) derived from Landsat-5 TM supervised classification indicate soil loss in the salt marsh to be an important DOC source in the wetland-estuary system, and overall strong land use/land loss impact on the long-term DOC trends in the Barataria Basin

    What’s really damaging the Reef?: Tracing the origin and fate of the ecologically detrimental sediment and associated bioavailable nutrients

    Get PDF
    This report addresses six key systematic questions to help inform the debate on the influence of anthropogenic sediment and associated particulate nutrients delivered to the Great Barrier Reef (GBR) lagoon. They are: 1. What is the influence of the newly-delivered sediment (i.e. from flood plumes) on turbidity regimes at coral reef and seagrass locations of the inshore GBR? 2. What is the contribution of the anthropogenic component of this sediment on turbidity regimes? 3. What are the characteristics of the suspended particulate matter (and associated particulate nutrients) that influence light and turbidity regimes and how do these change over the estuarine mixing gradient of flood plumes? 4. How does the particulate organic component of the suspended particulate matter and associated microbial community composition change from the catchment to reef? 5. How bioavailable is the suspended particulate matter along the estuarine mixing gradient 6. Where does the sediment (and associated particulate nutrients) that influence light and turbidity regimes in the GBR come from in the Burdekin catchment so that management efforts can be prioritised? This final project report is divided into eight separate stand-alone research chapters which collectively address these six key questions

    Remote sensing of large reservoir in the drought years: Implications on surface water change and turbidity variability of Sobradinho reservoir (Northeast Brazil)

    Get PDF
    Sobradinho reservoir has been suffering a severe water loss caused by multi-year drought in the Northeast Brazil. This reservoir contributes to the socio-economic development of the semi-arid region, and the monitoring of water shortage is crucial for people living in this climate-vulnerable region. In this study, we evaluate the surface water change and turbidity variability of Sobradinho reservoir during recent drought years (2013–2017). A time-series dataset was created using 109 Landsat-8 OLI images for mapping the water extent in the reservoir. A non-linear regression between measured turbidity and surface reflectance (red band) was developed and applied for turbidity retrievals. Additionally, we performed a long-term precipitation analysis (17-year) to assess the rainfall deficit over the catchment area. Our results show that the annual precipitation regimes are below the long-term average during 2012–2017 period, except 2013. We also found that negative anomalies occur during 26 out of 36 months between 2014 and 2016, mostly in the rainy season. Since the rainfall regimes and river discharges are the major drivers for water recharge, these drought years have a critical impact on the reservoir level. According to our results, the water surface receded about 2073 km2 (out of total 3303 km2) during September 2017; this represents a reduction of 62.8% in the total water extent. The surface water change is spatially distinct across the reservoir. For instance, the upper section of the reservoir was almost totally dried during September 2017, and the water coverage was ~8% (91.25 km2 out of 1128 km2). Although other sections had a relatively low water change (reduction of ~40%), the losses are significant in terms of area (~1035.5 km2). The receding of water extent affects the people living near to the reservoir, and local communities are more distant from water (up to 13 km). We also observed that the turbidity is seasonally dependent, and water clarity presents a strong variability between rainy and dry seasons. In general, the turbidity levels vary from clear water (0–20 NTU) during the dry season to turbid condition (\u3e50 NTU) during the rainy season. A lack of access to clean and safe drinking water in some periods might be harmful to humans, livestock and domestic animals. Finally, this research contributes to the assessment of drought-related impacts in the Sobradinho, the largest reservoir in the Northeast Brazil. The water shortage is a recurring concern in the semi-arid region, and the remote sensing techniques provide spatially explicit information to enhance the livelihood resilience during drought years

    DETECTION OF TOTAL SUSPENDED SOLIDS DISTRIBUTION USING EMPIRICAL AND SEMI-ANALYTICAL MODELS IN BEKASI

    Get PDF
    Salah satu parameter dalam kualitas air adalah muatan padatan tersuspensi (MPT). Muatan padatan tersuspensi terdiri dari lumpur, pasir dan jasad renik yang disebabkan pengikisan tanah yang terbawa ke badan air. Penelitian ini bertujuan untuk mendeteksi sedimen tersuspensi di perairan Bekasi. Landsat 8 digunakan untuk analisis padatan tersuspensi dengan platform Google Earth Engine dengan membandingkan antara model empiris dan semi-analitik. Alur studi ini meliputi deliniasi wilayah non air menggunakan data citra surface reflectance, analisis MPT, dan visualisasi. Selanjutnya dilakukan validasi dengan data in situ, pemilihan model dan implementasi time series. Hasil deteksi MPT tertampil dengan tampilan warna yang berbeda sesuai dengan konsentrasinya. Hasil uji validasi dengan data in situ menunjukkan nilai Normalized Mean Absolute Error (NMAE) model semi-analitik lebih mendekati syarat minimum yaitu sebesar 66,8%, berbeda jauh dengan model empiris sebesar 43768%. Nilai Root Mean Square Error (RMSE) pun terlihat bahwa model semi-analitik menghasilkan nilai yang jauh lebih kecil sebesar 51,4 dan model empiris sebesar 58577,2. Hal ini menunjukkan bahwa model semi-analitik memiliki nilai yang lebih baik dalam mendeteksi sebaran MPT. Analisis time series menunjukkan bahwa persebaran MPT tahun 2015 – 2019 di perairan pesisir memiliki sebaran MPT yang sangat tinggi, karena banyaknya tambak dan muara sungai. Oleh karena itu, model semi-analitik lebih direkomendasikan untuk mengestimasi konsentrasi MPT dibandingkan dengan model empiris.One of the parameters in water quality is total suspended solids (TSS). TSS consists of mud and microorganisms caused by erosion of soil flowed into water bodies. This study aimed to detect suspended sediments in Bekasi coastal water by comparing empirical and semi-analytic models. Landsat 8 was used for analysis of suspended solids using the Google Earth Engine platform. The workflow of this study consisted of land masking by area delineation using surface reflectance image data, TSS analysis, and visualization. Then validation was done with in situ data, model selection and time series implementation. TSS detection results were displayed with a different color display according to the concentration. Validation test results with in situ data showed that the value of the Semi-Analytical Absolute Error (NMAE) model was closer to the minimum requirement of 66.8%, far different from the empirical model of 43768%. The value of Root Mean Square Error (RMSE) also showed that the semi-analytic model produced a much smaller value of 51.4 and the empirical model of 58577.2. This showed that the semi-analytic model has a better value in detecting the distribution of TSS. Time series analysis showed that the distribution of MPT in 2015 - 2019 in coastal waters had a very high TSS distribution, due to the number of ponds and river estuaries. Therefore, semi-analytical model was more recommended for estimating TSS concentrations than empirical model

    Analyse der Wasserfarbe von Seen mithilfe räumlich hoch und mittel auflösender Satelliten

    Get PDF
    Remote sensing techniques can assist traditional lake monitoring approaches by supplying spatial information on optically active lake ecology indicators, i.e. chlorophyll-a (CHL), total suspended matter (TSM), coloured dissolved organic matter (CDOM), and, especially in optically shallow waters, water depth and substrate composition. The present thesis provides an overview on the current research status concerning lake remote sensing and the benefit of time series analyses for lake ecology. To investigate the suitability of Sentinel-2 and Landsat 8 for lake monitoring and their combination with other sensors this thesis focused on two study areas with highly different optical characteristics, i.e. the oligotrophic Lake Starnberg (southern Germany) and the mesotrophic-eutrophic Lake Kummerow (northern Germany). Using the bio-optical model WASI-2D, Sentinel-2A turned out to be suited for retrieving low TSM and CDOM values. The high spatial resolution enabled the differentiation between bare ground and areas covered by submerged aquatic vegetation. Water depth estimations performed well until half Secchi disk depth. Cross-sensor comparisons demonstrated high correlation of CHL among timely acquired, spatially high and medium resolved sensors. Evaluations with in situ data showed that most of the sensor-in situ match-ups were within an uncertainty range of in situ measurements. Analysing a 9-year MERIS time series with FUB/WeW revealed unprecedented information on temporal trends and seasonal behaviour of CHL, TSM and CDOM at the study area Lake Kummerow. Combining CHL, retrieved with the Modular Inversion and Processing System, from different satellite sensors (MODIS, Landsat 7/ 8, Sentinel-2A) enabled detailed observations of phytoplankton development. Such combinations are a step forward to future lake analyses which may integrate remote sensing data, in situ measurements and environmental modelling.Fernerkundungstechniken können das Seemonitoring mit räumlichen Informationen über optisch aktive Indikatoren der Gewässerökologie liefern, z.B. Chlorophyll-a (CHL), suspendierte Schwebstoffe (TSM), Gelbstoffe (CDOM) und insbesondere in optisch flachen Gewässern, Wassertiefe und Substratbedeckung. Die vorliegende Arbeit gibt einen Überblick über den aktuellen Forschungsstand zur Seefernerkundung und den Nutzen von Zeitreihenanalysen für die Seeökologie. Um die Eignung von Sentinel-2 und Landsat 8 für ein Seenmonitoring und deren Kombination mit anderen Sensoren zu untersuchen, konzentrierte sich diese Arbeit auf zwei Untersuchungsgebiete mit sehr unterschiedlichen optischen Eigenschaften: den oligotrophen Starnberger See (Süddeutschland) und den mesotroph-eutrophen Kummerower See (Norddeutschland). Mit dem bio-optischen Modell WASI-2D erwies sich Sentinel-2A als geeignet, um niedrige TSM- und CDOM-Werte zu bestimmen. Die hohe räumliche Auflösung ermöglichte eine Unterscheidung zwischen unbewachsenem und mit Makrophyten bewachsenem Untergrund. Die Wassertiefenbestimmung verlief bis zur halben Sichttiefe gut. Sensorübergreifende Vergleiche zeigten eine hohe Korrelation von CHL zwischen zeitnah erfassten, räumlich mittel und hoch aufgelösten Sensoren. Auswertungen mit in-situ-Daten zeigten, dass die meisten Sensor-in-situ-Match-ups innerhalb eines Unsicherheitsbereichs von in-situ-Messungen lagen. Die Analyse einer 9-jährigen MERIS-Zeitreihe mit FUB/WeW ergab neue Informationen über zeitliche Trends und saisonales Verhalten von CHL, TSM und CDOM im Untersuchungsgebiet Kummerow See. Die Kombination von CHL aus verschiedenen Satellitensensoren (MODIS, Landsat 7/ 8, Sentinel-2A) mit dem Modular Inversion and Processing System ermöglichte detaillierte Beobachtungen der Phytoplanktonentwicklung. Solche Kombinationen sind ein Schritt für zukünftigen Gewässeranalysen, die Fernerkundungsdaten, in-situ-Messungen und Umweltmodellierung integrieren sollten
    • …
    corecore