73 research outputs found

    An explainable recommender system based on semantically-aware matrix factorization.

    Get PDF
    Collaborative Filtering techniques provide the ability to handle big and sparse data to predict the ratings for unseen items with high accuracy. Matrix factorization is an accurate collaborative filtering method used to predict user preferences. However, it is a black box system that recommends items to users without being able to explain why. This is due to the type of information these systems use to build models. Although rich in information, user ratings do not adequately satisfy the need for explanation in certain domains. White box systems, in contrast, can, by nature, easily generate explanations. However, their predictions are less accurate than sophisticated black box models. Recent research has demonstrated that explanations are an essential component in bringing the powerful predictions of big data and machine learning methods to a mass audience without a compromise in trust. Explanations can take a variety of formats, depending on the recommendation domain and the machine learning model used to make predictions. Semantic Web (SW) technologies have been exploited increasingly in recommender systems in recent years. The SW consists of knowledge graphs (KGs) providing valuable information that can help improve the performance of recommender systems. Yet KGs, have not been used to explain recommendations in black box systems. In this dissertation, we exploit the power of the SW to build new explainable recommender systems. We use the SW\u27s rich expressive power of linked data, along with structured information search and understanding tools to explain predictions. More specifically, we take advantage of semantic data to learn a semantically aware latent space of users and items in the matrix factorization model-learning process to build richer, explainable recommendation models. Our off-line and on-line evaluation experiments show that our approach achieves accurate prediction with the additional ability to explain recommendations, in comparison to baseline approaches. By fostering explainability, we hope that our work contributes to more transparent, ethical machine learning without sacrificing accuracy

    Mining semantic knowledge graphs to add explainability to black box recommender systems

    Get PDF
    Recommender systems are being increasingly used to predict the preferences of users on online platforms and recommend relevant options that help them cope with information overload. In particular, modern model-based collaborative filtering algorithms, such as latent factor models, are considered state-of-the-art in recommendation systems. Unfortunately, these black box systems lack transparency, as they provide little information about the reasoning behind their predictions. White box systems, in contrast, can, by nature, easily generate explanations. However, their predictions are less accurate than sophisticated black box models. Recent research has demonstrated that explanations are an essential component in bringing the powerful predictions of big data and machine learning methods to a mass audience without compromising trust. Explanations can take a variety of formats, depending on the recommendation domain and the machine learning model used to make predictions. The objective of this work is to build a recommender system that can generate both accurate predictions and semantically rich explanations that justify the predictions. We propose a novel approach to build an explanation generation mechanism into a latent factor-based black box recommendation model. The designed model is trained to learn to make predictions that are accompanied by explanations that are automatically mined from the semantic web. Our evaluation experiments, which carefully study the trade-offs between the quality of predictions and explanations, show that our proposed approach succeeds in producing explainable predictions without a significant sacrifice in prediction accuracy

    Recommender System with Explanations

    Get PDF
    O propósito desta dissertação é implementar um Sistema de Recomendação de estabelecimentos de comércio a utilizadores específicos, com capacidade de explicar os resultados obtidos

    Enhancing Job Recommendation through LLM-based Generative Adversarial Networks

    Full text link
    Recommending suitable jobs to users is a critical task in online recruitment platforms, as it can enhance users' satisfaction and the platforms' profitability. While existing job recommendation methods encounter challenges such as the low quality of users' resumes, which hampers their accuracy and practical effectiveness. With the rapid development of large language models (LLMs), utilizing the rich external knowledge encapsulated within them, as well as their powerful capabilities of text processing and reasoning, is a promising way to complete users' resumes for more accurate recommendations. However, directly leveraging LLMs to enhance recommendation results is not a one-size-fits-all solution, as LLMs may suffer from fabricated generation and few-shot problems, which degrade the quality of resume completion. In this paper, we propose a novel LLM-based approach for job recommendation. To alleviate the limitation of fabricated generation for LLMs, we extract accurate and valuable information beyond users' self-description, which helps the LLMs better profile users for resume completion. Specifically, we not only extract users' explicit properties (e.g., skills, interests) from their self-description but also infer users' implicit characteristics from their behaviors for more accurate and meaningful resume completion. Nevertheless, some users still suffer from few-shot problems, which arise due to scarce interaction records, leading to limited guidance for the models in generating high-quality resumes. To address this issue, we propose aligning unpaired low-quality with high-quality generated resumes by Generative Adversarial Networks (GANs), which can refine the resume representations for better recommendation results. Extensive experiments on three large real-world recruitment datasets demonstrate the effectiveness of our proposed method.Comment: 13 pages, 6 figures, 3 table

    A Survey on Knowledge Graphs: Representation, Acquisition and Applications

    Full text link
    Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction towards cognition and human-level intelligence. In this survey, we provide a comprehensive review of knowledge graph covering overall research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications, and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models, and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed. We further explore several emerging topics, including meta relational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of datasets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions

    Peeking into the other half of the glass : handling polarization in recommender systems.

    Get PDF
    This dissertation is about filtering and discovering information online while using recommender systems. In the first part of our research, we study the phenomenon of polarization and its impact on filtering and discovering information. Polarization is a social phenomenon, with serious consequences, in real-life, particularly on social media. Thus it is important to understand how machine learning algorithms, especially recommender systems, behave in polarized environments. We study polarization within the context of the users\u27 interactions with a space of items and how this affects recommender systems. We first formalize the concept of polarization based on item ratings and then relate it to the item reviews, when available. We then propose a domain independent data science pipeline to automatically detect polarization using the ratings rather than the properties, typically used to detect polarization, such as item\u27s content or social network topology. We perform an extensive comparison of polarization measures on several benchmark data sets and show that our polarization detection framework can detect different degrees of polarization and outperforms existing measures in capturing an intuitive notion of polarization. We also investigate and uncover certain peculiar patterns that are characteristic of environments where polarization emerges: A machine learning algorithm finds it easier to learn discriminating models in polarized environments: The models will quickly learn to keep each user in the safety of their preferred viewpoint, essentially, giving rise to filter bubbles and making them easier to learn. After quantifying the extent of polarization in current recommender system benchmark data, we propose new counter-polarization approaches for existing collaborative filtering recommender systems, focusing particularly on the state of the art models based on Matrix Factorization. Our work represents an essential step toward the new research area concerned with quantifying, detecting and counteracting polarization in human-generated data and machine learning algorithms.We also make a theoretical analysis of how polarization affects learning latent factor models, and how counter-polarization affects these models. In the second part of our dissertation, we investigate the problem of discovering related information by recommendation of tags on social media micro-blogging platforms. Real-time micro-blogging services such as Twitter have recently witnessed exponential growth, with millions of active web users who generate billions of micro-posts to share information, opinions and personal viewpoints, daily. However, these posts are inherently noisy and unstructured because they could be in any format, hence making them difficult to organize for the purpose of retrieval of relevant information. One way to solve this problem is using hashtags, which are quickly becoming the standard approach for annotation of various information on social media, such that varied posts about the same or related topic are annotated with the same hashtag. However hashtags are not used in a consistent manner and most importantly, are completely optional to use. This makes them unreliable as the sole mechanism for searching for relevant information. We investigate mechanisms for consolidating the hashtag space using recommender systems. Our methods are general enough that they can be used for hashtag annotation in various social media services such as twitter, as well as for general item recommendations on systems that rely on implicit user interest data such as e-learning and news sites, or explicit user ratings, such as e-commerce and online entertainment sites. To conclude, we propose a methodology to extract stories based on two types of hashtag co-occurrence graphs. Our research in hashtag recommendation was able to exploit the textual content that is available as part of user messages or posts, and thus resulted in hybrid recommendation strategies. Using content within this context can bridge polarization boundaries. However, when content is not available, is missing, or is unreliable, as in the case of platforms that are rich in multimedia and multilingual posts, the content option becomes less powerful and pure collaborative filtering regains its important role, along with the challenges of polarization

    Sequence modelling for e-commerce

    Get PDF

    Context based multimedia information retrieval

    Get PDF

    A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic, and Multimodal

    Full text link
    Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering, recommendation systems, and etc. According to the graph types, existing KGR models can be roughly divided into three categories, i.e., static models, temporal models, and multi-modal models. Early works in this domain mainly focus on static KGR, and recent works try to leverage the temporal and multi-modal information, which are more practical and closer to real-world. However, no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a first survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the models are reviewed based on bi-level taxonomy, i.e., top-level (graph types) and base-level (techniques and scenarios). Besides, the performances, as well as datasets, are summarized and presented. Moreover, we point out the challenges and potential opportunities to enlighten the readers. The corresponding open-source repository is shared on GitHub https://github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    corecore