638 research outputs found

    An unsupervised data-driven method to discover equivalent relations in large linked datasets

    Get PDF
    This article addresses a number of limitations of state-of-the-art methods of Ontology Alignment: 1) they primarily address concepts and entities while relations are less well-studied; 2) many build on the assumption of the ‘well-formedness’ of ontologies which is unnecessarily true in the domain of Linked Open Data; 3) few have looked at schema heterogeneity from a single source, which is also a common issue particularly in very large Linked Dataset created automatically from heterogeneous resources, or integrated from multiple datasets. We propose a domain- and language-independent and completely unsupervised method to align equivalent relations across schemata based on their shared instances. We introduce a novel similarity measure able to cope with unbalanced population of schema elements, an unsupervised technique to automatically decide similarity threshold to assert equivalence for a pair of relations, and an unsupervised clustering process to discover groups of equivalent relations across different schemata. Although the method is designed for aligning relations within a single dataset, it can also be adapted for cross-dataset alignment where sameAs links between datasets have been established. Using three gold standards created based on DBpedia, we obtain encouraging results from a thorough evaluation involving four baseline similarity measures and over 15 comparative models based on variants of the proposed method. The proposed method makes significant improvement over baseline models in terms of F1 measure (mostly between 7% and 40%), and it always scores the highest precision and is also among the top performers in terms of recall. We also make public the datasets used in this work, which we believe make the largest collection of gold standards for evaluating relation alignment in the LOD context

    Uncovering Hidden Semantics of Set Information in Knowledge Bases

    No full text
    Knowledge Bases (KBs) contain a wealth of structured information about entities and predicates. This paper focuses on set-valued predicates, i.e., the relationship between an entity and a set of entities. In KBs, this information is often represented in two formats: (i) via counting predicates such as numberOfChildren and staffSize, that store aggregated integers, and (ii) via enumerating predicates such as parentOf and worksFor, that store individual set memberships. Both formats are typically complementary: unlike enumerating predicates, counting predicates do not give away individuals, but are more likely informative towards the true set size, thus this coexistence could enable interesting applications in question answering and KB curation. In this paper we aim at uncovering this hidden knowledge. We proceed in two steps. (i) We identify set-valued predicates from a given KB predicates via statistical and embedding-based features. (ii) We link counting predicates and enumerating predicates by a combination of co-occurrence, correlation and textual relatedness metrics. We analyze the prevalence of count information in four prominent knowledge bases, and show that our linking method achieves up to 0.55 F1 score in set predicate identification versus 0.40 F1 score of a random selection, and normalized discounted gains of up to 0.84 at position 1 and 0.75 at position 3 in relevant predicate alignments. Our predicate alignments are showcased in a demonstration system available at https://counqer.mpi-inf.mpg.de/spo

    Ontology matching: state of the art and future challenges

    Get PDF
    shvaiko2013aInternational audienceAfter years of research on ontology matching, it is reasonable to consider several questions: is the field of ontology matching still making progress? Is this progress significant enough to pursue some further research? If so, what are the particularly promising directions? To answer these questions, we review the state of the art of ontology matching and analyze the results of recent ontology matching evaluations. These results show a measurable improvement in the field, the speed of which is albeit slowing down. We conjecture that significant improvements can be obtained only by addressing important challenges for ontology matching. We present such challenges with insights on how to approach them, thereby aiming to direct research into the most promising tracks and to facilitate the progress of the field

    Ontology Alignment Architecture for Semantic Sensor Web Integration

    Get PDF
    Abstract: Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall

    Vermeidung von ReprÀsentationsheterogenitÀten in realweltlichen Wissensgraphen

    Get PDF
    Knowledge graphs are repositories providing factual knowledge about entities. They are a great source of knowledge to support modern AI applications for Web search, question answering, digital assistants, and online shopping. The advantages of machine learning techniques and the Web's growth have led to colossal knowledge graphs with billions of facts about hundreds of millions of entities collected from a large variety of sources. While integrating independent knowledge sources promises rich information, it inherently leads to heterogeneities in representation due to a large variety of different conceptualizations. Thus, real-world knowledge graphs are threatened in their overall utility. Due to their sheer size, they are hardly manually curatable anymore. Automatic and semi-automatic methods are needed to cope with these vast knowledge repositories. We first address the general topic of representation heterogeneity by surveying the problem throughout various data-intensive fields: databases, ontologies, and knowledge graphs. Different techniques for automatically resolving heterogeneity issues are presented and discussed, while several open problems are identified. Next, we focus on entity heterogeneity. We show that automatic matching techniques may run into quality problems when working in a multi-knowledge graph scenario due to incorrect transitive identity links. We present four techniques that can be used to improve the quality of arbitrary entity matching tools significantly. Concerning relation heterogeneity, we show that synonymous relations in knowledge graphs pose several difficulties in querying. Therefore, we resolve these heterogeneities with knowledge graph embeddings and by Horn rule mining. All methods detect synonymous relations in knowledge graphs with high quality. Furthermore, we present a novel technique for avoiding heterogeneity issues at query time using implicit knowledge storage. We show that large neural language models are a valuable source of knowledge that is queried similarly to knowledge graphs already solving several heterogeneity issues internally.Wissensgraphen sind eine wichtige Datenquelle von EntitĂ€tswissen. Sie unterstĂŒtzen viele moderne KI-Anwendungen. Dazu gehören unter anderem Websuche, die automatische Beantwortung von Fragen, digitale Assistenten und Online-Shopping. Neue Errungenschaften im maschinellen Lernen und das außerordentliche Wachstum des Internets haben zu riesigen Wissensgraphen gefĂŒhrt. Diese umfassen hĂ€ufig Milliarden von Fakten ĂŒber Hunderte von Millionen von EntitĂ€ten; hĂ€ufig aus vielen verschiedenen Quellen. WĂ€hrend die Integration unabhĂ€ngiger Wissensquellen zu einer großen Informationsvielfalt fĂŒhren kann, fĂŒhrt sie inhĂ€rent zu HeterogenitĂ€ten in der WissensreprĂ€sentation. Diese HeterogenitĂ€t in den Daten gefĂ€hrdet den praktischen Nutzen der Wissensgraphen. Durch ihre GrĂ¶ĂŸe lassen sich die Wissensgraphen allerdings nicht mehr manuell bereinigen. DafĂŒr werden heutzutage hĂ€ufig automatische und halbautomatische Methoden benötigt. In dieser Arbeit befassen wir uns mit dem Thema ReprĂ€sentationsheterogenitĂ€t. Wir klassifizieren HeterogenitĂ€t entlang verschiedener Dimensionen und erlĂ€utern HeterogenitĂ€tsprobleme in Datenbanken, Ontologien und Wissensgraphen. Weiterhin geben wir einen knappen Überblick ĂŒber verschiedene Techniken zur automatischen Lösung von HeterogenitĂ€tsproblemen. Im nĂ€chsten Kapitel beschĂ€ftigen wir uns mit EntitĂ€tsheterogenitĂ€t. Wir zeigen Probleme auf, die in einem Multi-Wissensgraphen-Szenario aufgrund von fehlerhaften transitiven Links entstehen. Um diese Probleme zu lösen stellen wir vier Techniken vor, mit denen sich die QualitĂ€t beliebiger Entity-Alignment-Tools deutlich verbessern lĂ€sst. Wir zeigen, dass RelationsheterogenitĂ€t in Wissensgraphen zu Problemen bei der Anfragenbeantwortung fĂŒhren kann. Daher entwickeln wir verschiedene Methoden um synonyme Relationen zu finden. Eine der Methoden arbeitet mit hochdimensionalen Wissensgrapheinbettungen, die andere mit einem Rule Mining Ansatz. Beide Methoden können synonyme Relationen in Wissensgraphen mit hoher QualitĂ€t erkennen. DarĂŒber hinaus stellen wir eine neuartige Technik zur Vermeidung von HeterogenitĂ€tsproblemen vor, bei der wir eine implizite WissensreprĂ€sentation verwenden. Wir zeigen, dass große neuronale Sprachmodelle eine wertvolle Wissensquelle sind, die Ă€hnlich wie Wissensgraphen angefragt werden können. Im Sprachmodell selbst werden bereits viele der HeterogenitĂ€tsprobleme aufgelöst, so dass eine Anfrage heterogener Wissensgraphen möglich wird
    • 

    corecore