3,070 research outputs found

    Paraconsistency and analyticity

    Get PDF
    William Parry conceived in the early thirties a theory of entailment, the theory of analytic implication, intended to give a formal expression to the idea that the content of the conclusion of a valid argument must be included in the content of its premises. This paper introduces a system of analytic, paraconsistent and quasi-classical propositional logic that does not validate the paradoxes of Parry’s analytic implication. The interpretation of the expressions of this logic will be given in terms of a four-valued semantics, and its proof theory will be provided by a system of signed semantic tableaux that incorporates the techniques developed to improve the efficiency of the tableaux method for many-valued logics

    On the Satisfiability of Quasi-Classical Description Logics

    Get PDF
    Though quasi-classical description logic (QCDL) can tolerate the inconsistency of description logic in reasoning, a knowledge base in QCDL possibly has no model. In this paper, we investigate the satisfiability of QCDL, namely, QC-coherency and QC-consistency and develop a tableau calculus, as a formal proof, to determine whether a knowledge base in QCDL is QC-consistent. To do so, we repair the standard tableau for DL by introducing several new expansion rules and defining a new closeness condition. Finally, we prove that this calculus is sound and complete. Based on this calculus, we implement an OWL paraconsistent reasoner called QC-OWL. Preliminary experiments show that QC-OWL is highly efficient in checking QC-consistency

    De Finettian Logics of Indicative Conditionals Part II: Proof Theory and Algebraic Semantics

    Get PDF
    In Part I of this paper, we identified and compared various schemes for trivalent truth conditions for indicative conditionals, most notably the proposals by de Finetti (1936) and Reichenbach (1935, 1944) on the one hand, and by Cooper ( Inquiry , 11 , 295–320, 1968) and Cantwell ( Notre Dame Journal of Formal Logic , 49 , 245–260, 2008) on the other. Here we provide the proof theory for the resulting logics and , using tableau calculi and sequent calculi, and proving soundness and completeness results. Then we turn to the algebraic semantics, where both logics have substantive limitations: allows for algebraic completeness, but not for the construction of a canonical model, while fails the construction of a Lindenbaum-Tarski algebra. With these results in mind, we draw up the balance and sketch future research projects

    Modal mu-calculi

    Get PDF

    Labelled Modal Tableaux

    Get PDF
    Labelled tableaux are extensions of semantic tableaux with annotations (labels, indices) whose main function is to enrich the modal object language with semantic elements. This paper consists of three parts. In the first part we consider some options for labels: simple constant labels vs labels with free variables, logic depended inference rules vs labels manipulation based on a label algebra. In the second and third part we concentrate on a particular labelled tableaux system called KEM using free variable and a specialised label algebra. Specifically in the second part we show how labelled tableaux (KEM) can account for different types of logics (e.g., non-normal modal logics and conditional logics). In the third and final part we investigate the relative complexity of labelled tableaux systems and we show that the uses of KEM's label algebra can lead to speed up on proofs

    Labelled Tableaux For Non-Normal Modal Logics

    Get PDF
    In this paper we show how to extend KEM, a tableaux-like proof system for normal modal logic, in order to deal with classes of non-normal modal logic, such as monotonic and regular, in a uniform and modular way

    Proof theory for hybrid(ised) logics

    Get PDF
    Hybridisation is a systematic process along which the characteristic features of hybrid logic, both at the syntactic and the semantic levels, are developed on top of an arbitrary logic framed as an institution. In a series of papers this process has been detailed and taken as a basis for a specification methodology for reconfigurable systems. The present paper extends this work by showing how a proof calculus (in both a Hilbert and a tableau based format) for the hybridised version of a logic can be systematically generated from a proof calculus for the latter. Such developments provide the basis for a complete proof theory for hybrid(ised) logics, and thus pave the way to the development of (dedicated) proof support.The authors are grateful to Torben Bräuner for helpful, inspiring discussions, and to the anonymous referees for their detailed comments. This work is funded by ERDF—European Regional Development Fund, through the COMPETE Programme, and by National Funds through Fundação para a Ciência e a Tecnologia(FCT) within project PTDC/EEI-CTP/4836/2014. Moreover, the first and the second authors are sponsored by FCT grants SFRH/BD/52234/2013 and SFRH/BPD/103004/2014, respectively. M. Mar-tins is also supported by the EU FP7 Marie Curie PIRSES-GA-2012-318986 project GeTFun: Generalizing Truth-Functionality and FCT project UID/MAT/04106/2013 through CIDMA. L.Barbosa is further supported by FCT in the context of SFRH/B-SAB/113890/2015
    corecore