21,220 research outputs found

    A Polyvariant Binding-Time Analysis for Off-line Partial Deduction

    Full text link
    We study the notion of binding-time analysis for logic programs. We formalise the unfolding aspect of an on-line partial deduction system as a Prolog program. Using abstract interpretation, we collect information about the run-time behaviour of the program. We use this information to make the control decisions about the unfolding at analysis time and to turn the on-line system into an off-line system. We report on some initial experiments.Comment: 19 pages (including appendix) Paper (without appendix) appeared in Programming Languages and Systems, Proceedings of the European Symposium on Programming (ESOP'98), Part of ETAPS'98 (Chris Hankin, eds.), LNCS, vol. 1381, 1998, pp. 27-4

    Separation Logic for Small-step Cminor

    Get PDF
    Cminor is a mid-level imperative programming language; there are proved-correct optimizing compilers from C to Cminor and from Cminor to machine language. We have redesigned Cminor so that it is suitable for Hoare Logic reasoning and we have designed a Separation Logic for Cminor. In this paper, we give a small-step semantics (instead of the big-step of the proved-correct compiler) that is motivated by the need to support future concurrent extensions. We detail a machine-checked proof of soundness of our Separation Logic. This is the first large-scale machine-checked proof of a Separation Logic w.r.t. a small-step semantics. The work presented in this paper has been carried out in the Coq proof assistant. It is a first step towards an environment in which concurrent Cminor programs can be verified using Separation Logic and also compiled by a proved-correct compiler with formal end-to-end correctness guarantees.Comment: Version courte du rapport de recherche RR-613

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Program transformations using temporal logic side conditions

    Get PDF
    This paper describes an approach to program optimisation based on transformations, where temporal logic is used to specify side conditions, and strategies are created which expand the repertoire of transformations and provide a suitable level of abstraction. We demonstrate the power of this approach by developing a set of optimisations using our transformation language and showing how the transformations can be converted into a form which makes it easier to apply them, while maintaining trust in the resulting optimising steps. The approach is illustrated through a transformational case study where we apply several optimisations to a small program

    Program development using abstract interpretation (and the ciao system preprocessor)

    Get PDF
    The technique of Abstract Interpretation has allowed the development of very sophisticated global program analyses which are at the same time provably correct and practical. We present in a tutorial fashion a novel program development framework which uses abstract interpretation as a fundamental tool. The framework uses modular, incremental abstract interpretation to obtain information about the program. This information is used to validate programs, to detect bugs with respect to partial specifications written using assertions (in the program itself and/or in system librarles), to genérate and simplify run-time tests, and to perform high-level program transformations such as múltiple abstract specialization, parallelization, and resource usage control, all in a provably correct way. In the case of validation and debugging, the assertions can refer to a variety of program points such as procedure entry, procedure exit, points within procedures, or global computations. The system can reason with much richer information than, for example, traditional types. This includes data structure shape (including pointer sharing), bounds on data structure sizes, and other operational variable instantiation properties, as well as procedure-level properties such as determinacy, termination, non-failure, and bounds on resource consumption (time or space cost). CiaoPP, the preprocessor of the Ciao multi-paradigm programming system, which implements the described functionality, will be used to illustrate the fundamental ideas
    corecore