11,761 research outputs found

    Digital Preservation, Archival Science and Methodological Foundations for Digital Libraries

    Get PDF
    Digital libraries, whether commercial, public or personal, lie at the heart of the information society. Yet, research into their long‐term viability and the meaningful accessibility of their contents remains in its infancy. In general, as we have pointed out elsewhere, ‘after more than twenty years of research in digital curation and preservation the actual theories, methods and technologies that can either foster or ensure digital longevity remain startlingly limited.’ Research led by DigitalPreservationEurope (DPE) and the Digital Preservation Cluster of DELOS has allowed us to refine the key research challenges – theoretical, methodological and technological – that need attention by researchers in digital libraries during the coming five to ten years, if we are to ensure that the materials held in our emerging digital libraries are to remain sustainable, authentic, accessible and understandable over time. Building on this work and taking the theoretical framework of archival science as bedrock, this paper investigates digital preservation and its foundational role if digital libraries are to have long‐term viability at the centre of the global information society.

    Dynamic Provenance for SPARQL Update

    Get PDF
    While the Semantic Web currently can exhibit provenance information by using the W3C PROV standards, there is a "missing link" in connecting PROV to storing and querying for dynamic changes to RDF graphs using SPARQL. Solving this problem would be required for such clear use-cases as the creation of version control systems for RDF. While some provenance models and annotation techniques for storing and querying provenance data originally developed with databases or workflows in mind transfer readily to RDF and SPARQL, these techniques do not readily adapt to describing changes in dynamic RDF datasets over time. In this paper we explore how to adapt the dynamic copy-paste provenance model of Buneman et al. [2] to RDF datasets that change over time in response to SPARQL updates, how to represent the resulting provenance records themselves as RDF in a manner compatible with W3C PROV, and how the provenance information can be defined by reinterpreting SPARQL updates. The primary contribution of this paper is a semantic framework that enables the semantics of SPARQL Update to be used as the basis for a 'cut-and-paste' provenance model in a principled manner.Comment: Pre-publication version of ISWC 2014 pape

    Semantic Modeling of Analytic-based Relationships with Direct Qualification

    Full text link
    Successfully modeling state and analytics-based semantic relationships of documents enhances representation, importance, relevancy, provenience, and priority of the document. These attributes are the core elements that form the machine-based knowledge representation for documents. However, modeling document relationships that can change over time can be inelegant, limited, complex or overly burdensome for semantic technologies. In this paper, we present Direct Qualification (DQ), an approach for modeling any semantically referenced document, concept, or named graph with results from associated applied analytics. The proposed approach supplements the traditional subject-object relationships by providing a third leg to the relationship; the qualification of how and why the relationship exists. To illustrate, we show a prototype of an event-based system with a realistic use case for applying DQ to relevancy analytics of PageRank and Hyperlink-Induced Topic Search (HITS).Comment: Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015

    Chemical information matters: an e-Research perspective on information and data sharing in the chemical sciences

    No full text
    Recently, a number of organisations have called for open access to scientific information and especially to the data obtained from publicly funded research, among which the Royal Society report and the European Commission press release are particularly notable. It has long been accepted that building research on the foundations laid by other scientists is both effective and efficient. Regrettably, some disciplines, chemistry being one, have been slow to recognise the value of sharing and have thus been reluctant to curate their data and information in preparation for exchanging it. The very significant increases in both the volume and the complexity of the datasets produced has encouraged the expansion of e-Research, and stimulated the development of methodologies for managing, organising, and analysing "big data". We review the evolution of cheminformatics, the amalgam of chemistry, computer science, and information technology, and assess the wider e-Science and e-Research perspective. Chemical information does matter, as do matters of communicating data and collaborating with data. For chemistry, unique identifiers, structure representations, and property descriptors are essential to the activities of sharing and exchange. Open science entails the sharing of more than mere facts: for example, the publication of negative outcomes can facilitate better understanding of which synthetic routes to choose, an aspiration of the Dial-a-Molecule Grand Challenge. The protagonists of open notebook science go even further and exchange their thoughts and plans. We consider the concepts of preservation, curation, provenance, discovery, and access in the context of the research lifecycle, and then focus on the role of metadata, particularly the ontologies on which the emerging chemical Semantic Web will depend. Among our conclusions, we present our choice of the "grand challenges" for the preservation and sharing of chemical information

    Towards Exascale Scientific Metadata Management

    Full text link
    Advances in technology and computing hardware are enabling scientists from all areas of science to produce massive amounts of data using large-scale simulations or observational facilities. In this era of data deluge, effective coordination between the data production and the analysis phases hinges on the availability of metadata that describe the scientific datasets. Existing workflow engines have been capturing a limited form of metadata to provide provenance information about the identity and lineage of the data. However, much of the data produced by simulations, experiments, and analyses still need to be annotated manually in an ad hoc manner by domain scientists. Systematic and transparent acquisition of rich metadata becomes a crucial prerequisite to sustain and accelerate the pace of scientific innovation. Yet, ubiquitous and domain-agnostic metadata management infrastructure that can meet the demands of extreme-scale science is notable by its absence. To address this gap in scientific data management research and practice, we present our vision for an integrated approach that (1) automatically captures and manipulates information-rich metadata while the data is being produced or analyzed and (2) stores metadata within each dataset to permeate metadata-oblivious processes and to query metadata through established and standardized data access interfaces. We motivate the need for the proposed integrated approach using applications from plasma physics, climate modeling and neuroscience, and then discuss research challenges and possible solutions

    Decentralized provenance-aware publishing with nanopublications

    Get PDF
    Publication and archival of scientific results is still commonly considered the responsability of classical publishing companies. Classical forms of publishing, however, which center around printed narrative articles, no longer seem well-suited in the digital age. In particular, there exist currently no efficient, reliable, and agreed-upon methods for publishing scientific datasets, which have become increasingly important for science. In this article, we propose to design scientific data publishing as a web-based bottom-up process, without top-down control of central authorities such as publishing companies. Based on a novel combination of existing concepts and technologies, we present a server network to decentrally store and archive data in the form of nanopublications, an RDF-based format to represent scientific data. We show how this approach allows researchers to publish, retrieve, verify, and recombine datasets of nanopublications in a reliable and trustworthy manner, and we argue that this architecture could be used as a low-level data publication layer to serve the Semantic Web in general. Our evaluation of the current network shows that this system is efficient and reliable
    corecore