2,162 research outputs found

    From Wearable Sensors to Smart Implants – Towards Pervasive and Personalised Healthcare

    No full text
    <p>Objective: This article discusses the evolution of pervasive healthcare from its inception for activity recognition using wearable sensors to the future of sensing implant deployment and data processing. Methods: We provide an overview of some of the past milestones and recent developments, categorised into different generations of pervasive sensing applications for health monitoring. This is followed by a review on recent technological advances that have allowed unobtrusive continuous sensing combined with diverse technologies to reshape the clinical workflow for both acute and chronic disease management. We discuss the opportunities of pervasive health monitoring through data linkages with other health informatics systems including the mining of health records, clinical trial databases, multi-omics data integration and social media. Conclusion: Technical advances have supported the evolution of the pervasive health paradigm towards preventative, predictive, personalised and participatory medicine. Significance: The sensing technologies discussed in this paper and their future evolution will play a key role in realising the goal of sustainable healthcare systems.</p> <p> </p

    A Semantic Web approach to ontology-based system: integrating, sharing and analysing IoT health and fitness data

    Get PDF
    With the rapid development of fitness industry, Internet of Things (IoT) technology is becoming one of the most popular trends for the health and fitness areas. IoT technologies have revolutionised the fitness and the sport industry by giving users the ability to monitor their health status and keep track of their training sessions. More and more sophisticated wearable devices, fitness trackers, smart watches and health mobile applications will appear in the near future. These systems do collect data non-stop from sensors and upload them to the Cloud. However, from a data-centric perspective the landscape of IoT fitness devices and wellness appliances is characterised by a plethora of representation and serialisation formats. The high heterogeneity of IoT data representations and the lack of common accepted standards, keep data isolated within each single system, preventing users and health professionals from having an integrated view of the various information collected. Moreover, in order to fully exploit the potential of the large amounts of data, it is also necessary to enable advanced analytics over it, thus achieving actionable knowledge. Therefore, due the above situation, the aim of this thesis project is to design and implement an ontology based system to (1) allow data interoperability among heterogeneous IoT fitness and wellness devices, (2) facilitate the integration and the sharing of information and (3) enable advanced analytics over the collected data (Cognitive Computing). The novelty of the proposed solution lies in exploiting Semantic Web technologies to formally describe the meaning of the data collected by the IoT devices and define a common communication strategy for information representation and exchange

    Semantic lifting and reasoning on the personalised activity big data repository for healthcare research

    Get PDF
    The fast growing markets of smart health monitoring devices and mobile applications provide opportunities for common citizens to have capability for understanding and managing their own health situations. However, there are many challenges for data engineering and knowledge discovery research to enable efficient extraction of knowledge from data that is collected from heterogonous devices and applications with big volumes and velocity. This paper presents research that initially started with the EC MyHealthAvatar project and is under continual improvement following the project’s completion. The major contribution of the work is a comprehensive big data and semantic knowledge discovery framework which integrates data from varied data resources. The framework applies hybrid database architecture of NoSQL and RDF repositories with introductions for semantic oriented data mining and knowledge lifting algorithms. The activity stream data is collected through Kafka’s big data processing component. The motivation of the research is to enhance the knowledge management, discovery capabilities and efficiency to support further accurate health risk analysis and lifestyle summarisation

    Internet of things in health: Requirements, issues, and gaps

    Get PDF
    Background and objectives: The Internet of Things (IoT) paradigm has been extensively applied to several sectors in the last years, ranging from industry to smart cities. In the health domain, IoT makes possible new scenarios of healthcare delivery as well as collecting and processing health data in real time from sensors in order to make informed decisions. However, this domain is complex and presents several tech- nological challenges. Despite the extensive literature about this topic, the application of IoT in healthcare scarcely covers requirements of this sector. Methods: A literature review from January 2010 to February 2021 was performed resulting in 12,108 articles. After filtering by title, abstract, and content, 86 were eligible and examined according to three requirement themes: data lifecycle; trust, security, and privacy; and human-related issues. Results: The analysis of the reviewed literature shows that most approaches consider IoT application in healthcare merely as in any other domain (industry, smart cities…), with no regard of the specific requirements of this domain. Conclusions: Future effort s in this matter should be aligned with the specific requirements and needs of the health domain, so that exploiting the capabilities of the IoT paradigm may represent a meaningful step forward in the application of this technology in healthcare.Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía P18-TPJ - 307

    Internet of Things Architectures, Technologies, Applications, Challenges, and Future Directions for Enhanced Living Environments and Healthcare Systems: A Review

    Get PDF
    Internet of Things (IoT) is an evolution of the Internet and has been gaining increased attention from researchers in both academic and industrial environments. Successive technological enhancements make the development of intelligent systems with a high capacity for communication and data collection possible, providing several opportunities for numerous IoT applications, particularly healthcare systems. Despite all the advantages, there are still several open issues that represent the main challenges for IoT, e.g., accessibility, portability, interoperability, information security, and privacy. IoT provides important characteristics to healthcare systems, such as availability, mobility, and scalability, that o er an architectural basis for numerous high technological healthcare applications, such as real-time patient monitoring, environmental and indoor quality monitoring, and ubiquitous and pervasive information access that benefits health professionals and patients. The constant scientific innovations make it possible to develop IoT devices through countless services for sensing, data fusing, and logging capabilities that lead to several advancements for enhanced living environments (ELEs). This paper reviews the current state of the art on IoT architectures for ELEs and healthcare systems, with a focus on the technologies, applications, challenges, opportunities, open-source platforms, and operating systems. Furthermore, this document synthesizes the existing body of knowledge and identifies common threads and gaps that open up new significant and challenging future research directions.info:eu-repo/semantics/publishedVersio
    • …
    corecore