24,808 research outputs found

    Towards Understanding Egyptian Arabic Dialogues

    Full text link
    Labelling of user's utterances to understanding his attends which called Dialogue Act (DA) classification, it is considered the key player for dialogue language understanding layer in automatic dialogue systems. In this paper, we proposed a novel approach to user's utterances labeling for Egyptian spontaneous dialogues and Instant Messages using Machine Learning (ML) approach without relying on any special lexicons, cues, or rules. Due to the lack of Egyptian dialect dialogue corpus, the system evaluated by multi-genre corpus includes 4725 utterances for three domains, which are collected and annotated manually from Egyptian call-centers. The system achieves F1 scores of 70. 36% overall domains.Comment: arXiv admin note: substantial text overlap with arXiv:1505.0308

    Towards Understanding Spontaneous Speech: Word Accuracy vs. Concept Accuracy

    Full text link
    In this paper we describe an approach to automatic evaluation of both the speech recognition and understanding capabilities of a spoken dialogue system for train time table information. We use word accuracy for recognition and concept accuracy for understanding performance judgement. Both measures are calculated by comparing these modules' output with a correct reference answer. We report evaluation results for a spontaneous speech corpus with about 10000 utterances. We observed a nearly linear relationship between word accuracy and concept accuracy.Comment: 4 pages PS, Latex2e source importing 2 eps figures, uses icslp.cls, caption.sty, psfig.sty; to appear in the Proceedings of the Fourth International Conference on Spoken Language Processing (ICSLP 96

    Semantic Processing of Out-Of-Vocabulary Words in a Spoken Dialogue System

    Full text link
    One of the most important causes of failure in spoken dialogue systems is usually neglected: the problem of words that are not covered by the system's vocabulary (out-of-vocabulary or OOV words). In this paper a methodology is described for the detection, classification and processing of OOV words in an automatic train timetable information system. The various extensions that had to be effected on the different modules of the system are reported, resulting in the design of appropriate dialogue strategies, as are encouraging evaluation results on the new versions of the word recogniser and the linguistic processor.Comment: 4 pages, 2 eps figures, requires LaTeX2e, uses eurospeech.sty and epsfi

    A multilingual SLU system based on semantic decoding of graphs of words

    Full text link
    In this paper, we present a statistical approach to Language Understanding that allows to avoid the effort of obtaining new semantic models when changing the language. This way, it is not necessary to acquire and label new training corpora in the new language. Our approach consists of learning all the semantic models in a target language and to do the semantic decoding of the sentences pronounced in the source language after a translation process. In order to deal with the errors and the lack of coverage of the translations, a mechanism to generalize the result of several translators is proposed. The graph of words generated in this phase is the input to the semantic decoding algorithm specifically designed to combine statistical models and graphs of words. Some experiments that show the good behavior of the proposed approach are also presented.Calvo Lance, M.; Hurtado Oliver, LF.; García Granada, F.; Sanchís Arnal, E. (2012). A multilingual SLU system based on semantic decoding of graphs of words. En Advances in Speech and Language Technologies for Iberian Languages. Springer Verlag (Germany). 328:158-167. doi:10.1007/978-3-642-35292-8_17S158167328Hahn, S., Dinarelli, M., Raymond, C., Lefèvre, F., Lehnen, P., De Mori, R., Moschitti, A., Ney, H., Riccardi, G.: Comparing stochastic approaches to spoken language understanding in multiple languages. IEEE Transactions on Audio, Speech, and Language Processing 6(99), 1569–1583 (2010)Raymond, C., Riccardi, G.: Generative and discriminative algorithms for spoken language understanding. In: Proceedings of Interspeech 2007, pp. 1605–1608 (2007)Tur, G., Mori, R.D.: Spoken Language Understanding: Systems for Extracting Semantic Information from Speech, 1st edn. Wiley (2011)Maynard, H.B., Lefèvre, F.: Investigating Stochastic Speech Understanding. In: Proc. of IEEE Automatic Speech Recognition and Understanding Workshop, ASRU (2001)Segarra, E., Sanchis, E., Galiano, M., García, F., Hurtado, L.: Extracting Semantic Information Through Automatic Learning Techniques. IJPRAI 16(3), 301–307 (2002)He, Y., Young, S.: Spoken language understanding using the hidden vector state model. Speech Communication 48, 262–275 (2006)De Mori, R., Bechet, F., Hakkani-Tur, D., McTear, M., Riccardi, G., Tur, G.: Spoken language understanding: A survey. IEEE Signal Processing Magazine 25(3), 50–58 (2008)Hakkani-Tür, D., Béchet, F., Riccardi, G., Tur, G.: Beyond ASR 1-best: Using word confusion networks in spoken language understanding. Computer Speech & Language 20(4), 495–514 (2006)Tur, G., Wright, J., Gorin, A., Riccardi, G., Hakkani-Tür, D.: Improving spoken language understanding using word confusion networks. In: Proceedings of the ICSLP. Citeseer (2002)Tur, G., Hakkani-Tür, D., Schapire, R.E.: Combining active and semi-supervised learning for spoken language understanding. Speech Communication 45, 171–186 (2005)Ortega, L., Galiano, I., Hurtado, L.F., Sanchis, E., Segarra, E.: A statistical segment-based approach for spoken language understanding. In: Proc. of InterSpeech 2010, Makuhari, Chiba, Japan, pp. 1836–1839 (2010)Sim, K.C., Byrne, W.J., Gales, M.J.F., Sahbi, H., Woodland, P.C.: Consensus network decoding for statistical machine translation system combination. In: IEEE Int. Conference on Acoustics, Speech, and Signal Processing (2007)Bangalore, S., Bordel, G., Riccardi, G.: Computing Consensus Translation from Multiple Machine Translation Systems. In: Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2001, pp. 351–354 (2001)Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G.: ClustalW and ClustalX version 2.0. Bioinformatics 23(21), 2947–2948 (2007)Benedí, J.M., Lleida, E., Varona, A., Castro, M.J., Galiano, I., Justo, R., López de Letona, I., Miguel, A.: Design and acquisition of a telephone spontaneous speech dialogue corpus in Spanish: DIHANA. In: Proceedings of LREC 2006, Genoa, Italy, pp. 1636–1639 (May 2006
    • …
    corecore