39,287 research outputs found

    Personalized Cinemagraphs using Semantic Understanding and Collaborative Learning

    Full text link
    Cinemagraphs are a compelling way to convey dynamic aspects of a scene. In these media, dynamic and still elements are juxtaposed to create an artistic and narrative experience. Creating a high-quality, aesthetically pleasing cinemagraph requires isolating objects in a semantically meaningful way and then selecting good start times and looping periods for those objects to minimize visual artifacts (such a tearing). To achieve this, we present a new technique that uses object recognition and semantic segmentation as part of an optimization method to automatically create cinemagraphs from videos that are both visually appealing and semantically meaningful. Given a scene with multiple objects, there are many cinemagraphs one could create. Our method evaluates these multiple candidates and presents the best one, as determined by a model trained to predict human preferences in a collaborative way. We demonstrate the effectiveness of our approach with multiple results and a user study.Comment: To appear in ICCV 2017. Total 17 pages including the supplementary materia

    Visualizing and Interacting with Concept Hierarchies

    Full text link
    Concept Hierarchies and Formal Concept Analysis are theoretically well grounded and largely experimented methods. They rely on line diagrams called Galois lattices for visualizing and analysing object-attribute sets. Galois lattices are visually seducing and conceptually rich for experts. However they present important drawbacks due to their concept oriented overall structure: analysing what they show is difficult for non experts, navigation is cumbersome, interaction is poor, and scalability is a deep bottleneck for visual interpretation even for experts. In this paper we introduce semantic probes as a means to overcome many of these problems and extend usability and application possibilities of traditional FCA visualization methods. Semantic probes are visual user centred objects which extract and organize reduced Galois sub-hierarchies. They are simpler, clearer, and they provide a better navigation support through a rich set of interaction possibilities. Since probe driven sub-hierarchies are limited to users focus, scalability is under control and interpretation is facilitated. After some successful experiments, several applications are being developed with the remaining problem of finding a compromise between simplicity and conceptual expressivity

    A Web2.0 Strategy for the Collaborative Analysis of Complex Bioimages

    Get PDF
    Loyek C, Kölling J, Langenkämper D, Niehaus K, Nattkemper TW. A Web2.0 Strategy for the Collaborative Analysis of Complex Bioimages. In: Gama J, Bradley E, Hollmén J, eds. Advances in Intelligent Data Analysis X: 10th International Symposium, IDA 2011, Porto, Portugal, October 29-31, 2011. Proceedings. Lecture Notes in Computer Science. Vol 7014. Berlin, Heidelberg: Springer; 2011: 258-269

    Interactive Visual Analysis of Networked Systems: Workflows for Two Industrial Domains

    Get PDF
    We report on a first study of interactive visual analysis of networked systems. Working with ABB Corporate Research and Ericsson Research, we have created workflows which demonstrate the potential of visualization in the domains of industrial automation and telecommunications. By a workflow in this context, we mean a sequence of visualizations and the actions for generating them. Visualizations can be any images that represent properties of the data sets analyzed, and actions typically either change the selection of data visualized or change the visualization by choice of technique or change of parameters

    Specification and implementation of mapping rule visualization and editing : MapVOWL and the RMLEditor

    Get PDF
    Visual tools are implemented to help users in defining how to generate Linked Data from raw data. This is possible thanks to mapping languages which enable detaching mapping rules from the implementation that executes them. However, no thorough research has been conducted so far on how to visualize such mapping rules, especially if they become large and require considering multiple heterogeneous raw data sources and transformed data values. In the past, we proposed the RMLEditor, a visual graph-based user interface, which allows users to easily create mapping rules for generating Linked Data from raw data. In this paper, we build on top of our existing work: we (i) specify a visual notation for graph visualizations used to represent mapping rules, (ii) introduce an approach for manipulating rules when large visualizations emerge, and (iii) propose an approach to uniformly visualize data fraction of raw data sources combined with an interactive interface for uniform data fraction transformations. We perform two additional comparative user studies. The first one compares the use of the visual notation to present mapping rules to the use of a mapping language directly, which reveals that the visual notation is preferred. The second one compares the use of the graph-based RMLEditor for creating mapping rules to the form-based RMLx Visual Editor, which reveals that graph-based visualizations are preferred to create mapping rules through the use of our proposed visual notation and uniform representation of heterogeneous data sources and data values. (C) 2018 Elsevier B.V. All rights reserved

    Semantic-driven Configuration of Internet of Things Middleware

    Get PDF
    We are currently observing emerging solutions to enable the Internet of Things (IoT). Efficient and feature rich IoT middeware platforms are key enablers for IoT. However, due to complexity, most of these middleware platforms are designed to be used by IT experts. In this paper, we propose a semantics-driven model that allows non-IT experts (e.g. plant scientist, city planner) to configure IoT middleware components easier and faster. Such tools allow them to retrieve the data they want without knowing the underlying technical details of the sensors and the data processing components. We propose a Context Aware Sensor Configuration Model (CASCoM) to address the challenge of automated context-aware configuration of filtering, fusion, and reasoning mechanisms in IoT middleware according to the problems at hand. We incorporate semantic technologies in solving the above challenges. We demonstrate the feasibility and the scalability of our approach through a prototype implementation based on an IoT middleware called Global Sensor Networks (GSN), though our model can be generalized into any other middleware platform. We evaluate CASCoM in agriculture domain and measure both performance in terms of usability and computational complexity.Comment: 9th International Conference on Semantics, Knowledge & Grids (SKG), Beijing, China, October, 201
    corecore