364 research outputs found

    Land cover classification using fuzzy rules and aggregation of contextual information through evidence theory

    Full text link
    Land cover classification using multispectral satellite image is a very challenging task with numerous practical applications. We propose a multi-stage classifier that involves fuzzy rule extraction from the training data and then generation of a possibilistic label vector for each pixel using the fuzzy rule base. To exploit the spatial correlation of land cover types we propose four different information aggregation methods which use the possibilistic class label of a pixel and those of its eight spatial neighbors for making the final classification decision. Three of the aggregation methods use Dempster-Shafer theory of evidence while the remaining one is modeled after the fuzzy k-NN rule. The proposed methods are tested with two benchmark seven channel satellite images and the results are found to be quite satisfactory. They are also compared with a Markov random field (MRF) model-based contextual classification method and found to perform consistently better.Comment: 14 pages, 2 figure

    Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 2

    Get PDF
    Papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake, held 1-3 Jun. 1992 at the Lyndon B. Johnson Space Center in Houston, Texas are included. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making

    Multimodel Approaches for Plasma Glucose Estimation in Continuous Glucose Monitoring. Development of New Calibration Algorithms

    Full text link
    ABSTRACT Diabetes Mellitus (DM) embraces a group of metabolic diseases which main characteristic is the presence of high glucose levels in blood. It is one of the diseases with major social and health impact, both for its prevalence and also the consequences of the chronic complications that it implies. One of the research lines to improve the quality of life of people with diabetes is of technical focus. It involves several lines of research, including the development and improvement of devices to estimate "online" plasma glucose: continuous glucose monitoring systems (CGMS), both invasive and non-invasive. These devices estimate plasma glucose from sensor measurements from compartments alternative to blood. Current commercially available CGMS are minimally invasive and offer an estimation of plasma glucose from measurements in the interstitial fluid CGMS is a key component of the technical approach to build the artificial pancreas, aiming at closing the loop in combination with an insulin pump. Yet, the accuracy of current CGMS is still poor and it may partly depend on low performance of the implemented Calibration Algorithm (CA). In addition, the sensor-to-patient sensitivity is different between patients and also for the same patient in time. It is clear, then, that the development of new efficient calibration algorithms for CGMS is an interesting and challenging problem. The indirect measurement of plasma glucose through interstitial glucose is a main confounder of CGMS accuracy. Many components take part in the glucose transport dynamics. Indeed, physiology might suggest the existence of different local behaviors in the glucose transport process. For this reason, local modeling techniques may be the best option for the structure of the desired CA. Thus, similar input samples are represented by the same local model. The integration of all of them considering the input regions where they are valid is the final model of the whole data set. Clustering is tBarcelĂł Rico, F. (2012). Multimodel Approaches for Plasma Glucose Estimation in Continuous Glucose Monitoring. Development of New Calibration Algorithms [Tesis doctoral no publicada]. Universitat PolitĂšcnica de ValĂšncia. https://doi.org/10.4995/Thesis/10251/17173Palanci

    A new fuzzy set merging technique using inclusion-based fuzzy clustering

    Get PDF
    This paper proposes a new method of merging parameterized fuzzy sets based on clustering in the parameters space, taking into account the degree of inclusion of each fuzzy set in the cluster prototypes. The merger method is applied to fuzzy rule base simplification by automatically replacing the fuzzy sets corresponding to a given cluster with that pertaining to cluster prototype. The feasibility and the performance of the proposed method are studied using an application in mobile robot navigation. The results indicate that the proposed merging and rule base simplification approach leads to good navigation performance in the application considered and to fuzzy models that are interpretable by experts. In this paper, we concentrate mainly on fuzzy systems with Gaussian membership functions, but the general approach can also be applied to other parameterized fuzzy sets

    Possibilistic Approach to Biclustering: An Application to Oligonucleotide Microarray Data Analysis

    Get PDF
    The important research objective of identifying genes with similar behavior with respect to different conditions has recently been tackled with biclustering techniques. In this paper we introduce a new approach to the biclustering problem using the Possibilistic Clustering paradigm. The proposed Possibilistic Biclustering algorithm finds one bicluster at a time, assigning a membership to the bicluster for each gene and for each condition. The biclustering problem, in which one would maximize the size of the bicluster and minimizing the residual, is faced as the optimization of a proper functional. We applied the algorithm to the Yeast database, obtaining fast convergence and good quality solutions. We discuss the effects of parameter tuning and the sensitivity of the method to parameter values. Comparisons with other methods from the literature are also presented

    Robustness and Outliers

    Get PDF
    Producción CientíficaUnexpected deviations from assumed models as well as the presence of certain amounts of outlying data are common in most practical statistical applications. This fact could lead to undesirable solutions when applying non-robust statistical techniques. This is often the case in cluster analysis, too. The search for homogeneous groups with large heterogeneity between them can be spoiled due to the lack of robustness of standard clustering methods. For instance, the presence of (even few) outlying observations may result in heterogeneous clusters artificially joined together or in the detection of spurious clusters merely made up of outlying observations. In this chapter we will analyze the effects of different kinds of outlying data in cluster analysis and explore several alternative methodologies designed to avoid or minimize their undesirable effects.Ministerio de Economía, Industria y Competitividad (MTM2014-56235-C2-1-P)Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA212U13

    The posterity of Zadeh's 50-year-old paper: A retrospective in 101 Easy Pieces – and a Few More

    Get PDF
    International audienceThis article was commissioned by the 22nd IEEE International Conference of Fuzzy Systems (FUZZ-IEEE) to celebrate the 50th Anniversary of Lotfi Zadeh's seminal 1965 paper on fuzzy sets. In addition to Lotfi's original paper, this note itemizes 100 citations of books and papers deemed “important (significant, seminal, etc.)” by 20 of the 21 living IEEE CIS Fuzzy Systems pioneers. Each of the 20 contributors supplied 5 citations, and Lotfi's paper makes the overall list a tidy 101, as in “Fuzzy Sets 101”. This note is not a survey in any real sense of the word, but the contributors did offer short remarks to indicate the reason for inclusion (e.g., historical, topical, seminal, etc.) of each citation. Citation statistics are easy to find and notoriously erroneous, so we refrain from reporting them - almost. The exception is that according to Google scholar on April 9, 2015, Lotfi's 1965 paper has been cited 55,479 times

    Informational Paradigm, management of uncertainty and theoretical formalisms in the clustering framework: A review

    Get PDF
    Fifty years have gone by since the publication of the first paper on clustering based on fuzzy sets theory. In 1965, L.A. Zadeh had published “Fuzzy Sets” [335]. After only one year, the first effects of this seminal paper began to emerge, with the pioneering paper on clustering by Bellman, Kalaba, Zadeh [33], in which they proposed a prototypal of clustering algorithm based on the fuzzy sets theory

    Building environmentally-aware classifiers on streaming data

    Get PDF
    The three biggest challenges currently faced in machine learning, in our estimation, are the staggering quantity of data we wish to analyze, the incredibly small proportion of these data that are labeled, and the apparent lack of interest in creating algorithms that continually learn during inference. An unsupervised streaming approach addresses all three of these challenges, storing only a finite amount of information to model an unbounded dataset and adapting to new structures as they arise. Specifically, we are motivated by automated target recognition (ATR) in synthetic aperture sonar (SAS) imagery, the problem of finding explosive hazards on the sea oor. It has been shown that the performance of ATR can be improved by, instead of using a single classifier for the entire ATR task, creating several specialized classifers and fusing their predictions [44]. The prevailing opinion seems be that one should have different classifiers for varying complexity of sea oor [74], but we hypothesize that fusing classifiers based on sea bottom type will yield higher accuracy and better lend itself to making explainable classification decisions. The first step of building such a system is developing a robust framework for online texture classification, the topic of this research. xi In this work, we improve upon StreamSoNG [85], an existing algorithm for streaming data analysis (SDA) that models each structure in the data with a neural gas [69] and detects new structures by clustering an outlier list with the possibilistic 1-means [62] (P1M) algorithm. We call the modified algorithm StreamSoNGv2, denoting that it is the second version, or verse, if you will, of StreamSoNG. Notable improvements include detection of arbitrarily-shaped clusters by using DBSCAN [37] instead of P1M, using growing neural gas [43] to model each structure with an adaptive number of prototypes, and an automated approach to estimate the n parameters. Furthermore, we propose a novel algorithm called single-pass possibilistic clustering (SPC) for solving the same task. SPC maintains a fixed number of structures to model the data stream. These structures can be updated and merged based only on their "footprints", that is, summary statistics that contain all of the information from the stream needed by the algorithm without directly maintaining the entire stream. SPC is built on a damped window framework, allowing the user to balance the weight between old and new points in the stream with a decay factor parameter. We evaluate the two algorithms under consideration against four state of the art SDA algorithms from the literature on several synthetic datasets and two texture datasets: one real (KTH-TIPS2b [68]) and xii one simulated. The simulated dataset, a significant research effort in itself, is of our own construction in Unreal Engine and contains on the order of 6,000 images at 720 x 720 resolution from six different texture types. Our hope is that the methodology developed here will be effective texture classifiers for use not only in underwater scene understanding, but also in improving performance of ATR algorithms by providing a context in which the potential target is embedded.Includes bibliographical references

    Robust constrained fuzzy clustering

    Get PDF
    It is well-known that outliers and noisy data can be very harmful when applying clustering methods. Several fuzzy clustering methods which are able to handle the presence of noise have been proposed. In this work, we propose a robust clustering approach called F-TCLUST based on an “impartial” (i.e., self-determined by data) trimming. The proposed approach considers an eigenvalue ratio constraint that makes it a mathematically well-defined problem and serves to control the allowed differences among cluster scatters. A computationally feasible algorithm is proposed for its practical implementation. Some guidelines about how to choose the parameters controlling the performance of the fuzzy clustering procedure are also given.Estadística e I
    • 

    corecore