5,786 research outputs found

    Silent MST approximation for tiny memory

    Get PDF
    In network distributed computing, minimum spanning tree (MST) is one of the key problems, and silent self-stabilization one of the most demanding fault-tolerance properties. For this problem and this model, a polynomial-time algorithm with O(log2 ⁣n)O(\log^2\!n) memory is known for the state model. This is memory optimal for weights in the classic [1,poly(n)][1,\text{poly}(n)] range (where nn is the size of the network). In this paper, we go below this O(log2 ⁣n)O(\log^2\!n) memory, using approximation and parametrized complexity. More specifically, our contributions are two-fold. We introduce a second parameter~ss, which is the space needed to encode a weight, and we design a silent polynomial-time self-stabilizing algorithm, with space O(logns)O(\log n \cdot s). In turn, this allows us to get an approximation algorithm for the problem, with a trade-off between the approximation ratio of the solution and the space used. For polynomial weights, this trade-off goes smoothly from memory O(logn)O(\log n) for an nn-approximation, to memory O(log2 ⁣n)O(\log^2\!n) for exact solutions, with for example memory O(lognloglogn)O(\log n\log\log n) for a 2-approximation

    Self-stabilizing tree algorithms

    Full text link
    Designers of distributed algorithms have to contend with the problem of making the algorithms tolerant to several forms of coordination loss, primarily faulty initialization. The processes in a distributed system do not share a global memory and can only get a partial view of the global state. Transient failures in one part of the system may go unnoticed in other parts and thus cause the system to go into an illegal state. If the system were self-stabilizing, however, it is guaranteed that it will return to a legal state after a finite number of state transitions. This thesis presents and proves self-stabilizing algorithms for calculating tree metrics and for achieving mutual exclusion on a tree structured distributed system

    Two snap-stabilizing point-to-point communication protocols in message-switched networks

    Get PDF
    A snap-stabilizing protocol, starting from any configuration, always behaves according to its specification. In this paper, we present a snap-stabilizing protocol to solve the message forwarding problem in a message-switched network. In this problem, we must manage resources of the system to deliver messages to any processor of the network. In this purpose, we use information given by a routing algorithm. By the context of stabilization (in particular, the system starts in an arbitrary configuration), this information can be corrupted. So, the existence of a snap-stabilizing protocol for the message forwarding problem implies that we can ask the system to begin forwarding messages even if routing information are initially corrupted. In this paper, we propose two snap-stabilizing algorithms (in the state model) for the following specification of the problem: - Any message can be generated in a finite time. - Any emitted message is delivered to its destination once and only once in a finite time. This implies that our protocol can deliver any emitted message regardless of the state of routing tables in the initial configuration. These two algorithms are based on the previous work of [MS78]. Each algorithm needs a particular method to be transform into a snap-stabilizing one but both of them do not introduce a significant overcost in memory or in time with respect to algorithms of [MS78]

    Self-Stabilizing Token Distribution with Constant-Space for Trees

    Get PDF
    Self-stabilizing and silent distributed algorithms for token distribution in rooted tree networks are given. Initially, each process of a graph holds at most l tokens. Our goal is to distribute the tokens in the whole network so that every process holds exactly k tokens. In the initial configuration, the total number of tokens in the network may not be equal to nk where n is the number of processes in the network. The root process is given the ability to create a new token or remove a token from the network. We aim to minimize the convergence time, the number of token moves, and the space complexity. A self-stabilizing token distribution algorithm that converges within O(n l) asynchronous rounds and needs Theta(nh epsilon) redundant (or unnecessary) token moves is given, where epsilon = min(k,l-k) and h is the height of the tree network. Two novel ideas to reduce the number of redundant token moves are presented. One reduces the number of redundant token moves to O(nh) without any additional costs while the other reduces the number of redundant token moves to O(n), but increases the convergence time to O(nh l). All algorithms given have constant memory at each process and each link register
    corecore