2,584 research outputs found

    Silent MST approximation for tiny memory

    Get PDF
    In network distributed computing, minimum spanning tree (MST) is one of the key problems, and silent self-stabilization one of the most demanding fault-tolerance properties. For this problem and this model, a polynomial-time algorithm with O(log2 ⁣n)O(\log^2\!n) memory is known for the state model. This is memory optimal for weights in the classic [1,poly(n)][1,\text{poly}(n)] range (where nn is the size of the network). In this paper, we go below this O(log2 ⁣n)O(\log^2\!n) memory, using approximation and parametrized complexity. More specifically, our contributions are two-fold. We introduce a second parameter~ss, which is the space needed to encode a weight, and we design a silent polynomial-time self-stabilizing algorithm, with space O(logns)O(\log n \cdot s). In turn, this allows us to get an approximation algorithm for the problem, with a trade-off between the approximation ratio of the solution and the space used. For polynomial weights, this trade-off goes smoothly from memory O(logn)O(\log n) for an nn-approximation, to memory O(log2 ⁣n)O(\log^2\!n) for exact solutions, with for example memory O(lognloglogn)O(\log n\log\log n) for a 2-approximation

    Compact Deterministic Self-Stabilizing Leader Election: The Exponential Advantage of Being Talkative

    Full text link
    This paper focuses on compact deterministic self-stabilizing solutions for the leader election problem. When the protocol is required to be \emph{silent} (i.e., when communication content remains fixed from some point in time during any execution), there exists a lower bound of Omega(\log n) bits of memory per node participating to the leader election (where n denotes the number of nodes in the system). This lower bound holds even in rings. We present a new deterministic (non-silent) self-stabilizing protocol for n-node rings that uses only O(\log\log n) memory bits per node, and stabilizes in O(n\log^2 n) rounds. Our protocol has several attractive features that make it suitable for practical purposes. First, the communication model fits with the model used by existing compilers for real networks. Second, the size of the ring (or any upper bound on this size) needs not to be known by any node. Third, the node identifiers can be of various sizes. Finally, no synchrony assumption, besides a weakly fair scheduler, is assumed. Therefore, our result shows that, perhaps surprisingly, trading silence for exponential improvement in term of memory space does not come at a high cost regarding stabilization time or minimal assumptions

    Distributed stabilizing data structures

    Full text link
    Distributed algorithms aim to achieve better performance than sequential algorithms in terms of time complexity (or asymptotic time complexity) while keeping or lowering the memory requirement (space complexity) in a node. (In sequential algorithms, the memory requirement is the memory requirement of the algorithm itself.); Self-stabilizing distributed algorithms aim to achieve a comparable performance to non-stabilizing distributed algorithms when transient faults or arbitrary initialization cause the system to enter a state where a non-stabilizing algorithm cannot continue to properly perform its task; Transient faults can affect an existing data structure and alter its data content. As a result, the data structure may lose its properties, and the operations defined over the data structure will have unpredictable and undesirable results, making the data structure unusable; We present several self or snap-stabilizing algorithms for particular data structures; We propose an optimal self-stabilizing distributed algorithm for simultaneously activating non-adjacent processes on an oriented chain (Algorithm SSDS ). We use Algorithm SSDS to accomplish two tasks: local mutual exclusion and line sorting. We propose two uniform, self-stabilizing, deterministic protocols on oriented chains: a time and space optimal solution to the local mutual exclusion problem (Algorithm LMEC ), and a space and (asymptotic) time optimal solution to the distributed sorting problem (Algorithm SORTc ); We extend Algorithm SSDS to an asynchronous oriented ring with a distinguished node with some minor modifications, and we obtain general self-stabilization for simultaneously activated non-adjacent processes in an oriented ring with a distinguished process (Algorithm SSDSR ). We use Algorithm SSDSR to accomplish two tasks: local resource allocation and ring sorting. We propose two uniform, self-stabilizing, deterministic protocols on oriented rings: a time and space optimal solution to the local resource allocation problem (Algorithm LRAR ), and a space and (asymptotic) time optimal solution to the distributed sorting problem (Algorithm SORTr ); We extend Algorithm SSDS to an asynchronous rooted tree, and we obtain general self-stabilization for simultaneously activated non-adjacent processes in a rooted tree (Algorithm SSDST ). We then give two applications of Algorithm SSDST : a time and space optimal solution to the local mutual exclusion problem (Algorithm LMET ) and a space and (asymptotically) time optimal solution to the min heap problem (Algorithm HEAP ); In proving the time complexity of sorting, we introduce the notion of pseudo-time, similar to logical time introduced by Lamport; We present the first snap-stabilizing distributed binary search tree (BST) algorithm. The proposed algorithm uses a heap algorithm (Algorithm Heap) as a preprocessing step. This is also the first snap-stabilizing distributed solution to the heap problem

    Self-stabilizing wormhole routing in hypercubes

    Full text link
    Wormhole routing is an efficient technique used to communicate message packets between processors when they are not completely connected. To the best of our knowledge, this is the first attempt at designing a self-stabilizing wormhole routing algorithm for hypercubes. Our first algorithm handles all types of faults except for node/link failures. This algorithm achieves optimality in terms of routing path length by following only the preferred dimensions. In an n-dimensional hypercube, those dimensions in which source and destination address bits differ are called preferred dimensions. Our second algorithm handles topological changes. We propose an efficient scheme of rerouting flits in case of node/link failures. Similar to the first algorithm, this algorithm also tries to follow preferred dimensions if they are nonfaulty at the time of transmitting the flits. However, due to topological faults it is necessary to take non-preferred dimensions resulting in suboptimality of path selection. Formal proof of correctness for both solutions is given. (Abstract shortened by UMI.)

    On the Limits and Practice of Automatically Designing Self-Stabilization

    Get PDF
    A protocol is said to be self-stabilizing when the distributed system executing it is guaranteed to recover from any fault that does not cause permanent damage. Designing such protocols is hard since they must recover from all possible states, therefore we investigate how feasible it is to synthesize them automatically. We show that synthesizing stabilization on a fixed topology is NP-complete in the number of system states. When a solution is found, we further show that verifying its correctness on a general topology (with any number of processes) is undecidable, even for very simple unidirectional rings. Despite these negative results, we develop an algorithm to synthesize a self-stabilizing protocol given its desired topology, legitimate states, and behavior. By analogy to shadow puppetry, where a puppeteer may design a complex puppet to cast a desired shadow, a protocol may need to be designed in a complex way that does not even resemble its specification. Our shadow/puppet synthesis algorithm addresses this concern and, using a complete backtracking search, has automatically designed 4 new self-stabilizing protocols with minimal process space requirements: 2-state maximal matching on bidirectional rings, 5-state token passing on unidirectional rings, 3-state token passing on bidirectional chains, and 4-state orientation on daisy chains

    Bio-Inspired Information Extraction In 3-D Environments Using Wide-Field Integration Of Optic Flow

    Get PDF
    A control theoretic framework is introduced to analyze an information extraction approach from patterns of optic flow based on analogues to wide-field motion-sensitive interneurons in the insect visuomotor system. An algebraic model of optic flow is developed, based on a parameterization of simple 3-D environments. It is shown that estimates of proximity and speed, relative to these environments, can be extracted using weighted summations of the instantaneous patterns of optic flow. Small perturbation techniques are utilized to link weighting patterns to outputs, which are applied as feedback to facilitate stability augmentation and perform local obstacle avoidance and terrain following. Weighting patterns that provide direct linear mappings between the sensor array and actuator commands can be derived by casting the problem as a combined static state estimation and linear feedback control problem. Additive noise and environment uncertainties are incorporated into an offline procedure for determination of optimal weighting patterns. Several applications of the method are provided, with differing spatial measurement domains. Non-linear stability analysis and experimental demonstration is presented for a wheeled robot measuring optic flow in a planar ring. Local stability analysis and simulation is used to show robustness over a range of urban-like environments for a fixed-wing UAV measuring in orthogonal rings and a micro helicopter measuring over the full spherical viewing arena. Finally, the framework is used to analyze insect tangential cells with respect to the information they encode and to demonstrate how cell outputs can be appropriately amplified and combined to generate motor commands to achieve reflexive navigation behavior

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    A self-stabilizing interval routing scheme in general networks

    Full text link
    The Pivot Interval Routing (PIR) scheme [EGP98] divides the nodes in the network into pivots and clients of the pivots. A pivot acts as a center for the partition of the network formed by its clients. Each node can send messages directly only to a small subset of vertices in its nearby vicinity or to the pivots; An algorithm is called self-stabilizing [Dij74] if, starting from an arbitrary initial state, it is guaranteed to reach a correct state in finite time and with no exterior help. In this thesis, we present a self-stabilizing PIR algorithm. The algorithm starts with no knowledge of the network architecture and, eventually, each node builds its own routing table of size O(n1/2log3/2 n + Deltaupsilon, log n) bits with a total of O(n3/2 log3/2 n) bits. The stabilization time of the algorithm is O&parl0;dn1+logn &parr0; time units, where n is the number of nodes and d is the diameter of the network. (Abstract shortened by UMI.)
    corecore