8,424 research outputs found

    Strategies for increasing the operating frequency range of vibration energy harvesters: a review

    No full text
    This paper reviews possible strategies to increase the operational frequency range of vibration-based micro-generators. Most vibration-based micro-generators are spring-mass-damper systems which generate maximum power when the resonant frequency of the generator matches the frequency of the ambient vibration. Any difference between these two frequencies can result in a significant decrease in generated power. This is a fundamental limitation of resonant vibration generators which restricts their capability in real applications. Possible solutions include the periodic tuning of the resonant frequency of the generator so that it matches the frequency of the ambient vibration at all times or widening the bandwidth of the generator. Periodic tuning can be achieved using mechanical or electrical methods. Bandwidth widening can be achieved using a generator array, a mechanical stopper, non-linear (e.g. magnetic) springs or bi-stable structures. Tuning methods can be classified into intermittent tuning (power is consumed periodically to tune the device) and continuous tuning (the tuning mechanism is continuously powered). This paper presents a comprehensive review of the principles and operating strategies for increasing the operating frequency range of vibration-based micro-generators presented in the literature to date. The advantages and disadvantages of each strategy are evaluated and conclusions are drawn regarding the relevant merits of each approach

    Kinetic energy harvesting

    No full text
    This paper reviews kinetic energy harvesting as a potential localised power supply for wireless applications. Harvesting devices are typically implemented as resonant devices of which the power output depends upon the size of the inertial mass, the frequency and amplitude of the driving vibrations, the maximum available mass displacement and the damping. Three transduction mechanisms are currently primarily employed to convert mechanical into electrical energy: electromagnetic, piezoelectric and electrostatic. Piezoelectric and electrostatic mechanisms are best suited to small size MEMS implementations, but the power output from such devices is at present limited to a few microwatts. An electromagnetic generator implemented with discrete components has produced a power 120 ?W with the highest recorded efficiency to date of 51% for a device of this size reported to date. The packaged device is 0.8 cm3 and weighs 1.6 grams. The suitability of the technology in space applications will be determined by the nature of the available kinetic energy and the required level of output power. A radioactively coupled device may present an opportunity where suitable vibrations do not exist

    Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator

    No full text
    Vibration-based micro-generators, as an alternative source of energy, have become increasingly significant in the last decade. This paper presents a new tunable electromagnetic vibration-based micro-generator. Frequency tuning is realized by applying an axial tensile force to the micro-generator. The dimensions of the generator, especially the dimensions of the coil and the air gap between magnets, have been optimized to maximize the output voltage and power of the micro-generator. The resonant frequency has been successfully tuned from 67.6 to 98 Hz when various axial tensile forces were applied to the structure. The generator produced a power of 61.6–156.6 µW over the tuning range when excited at vibrations of 0.59 ms-2. The tuning mechanism has little effect on the total damping. When the tuning force applied on the generator becomes larger than the generator’s inertial force, the total damping increases resulting in reduced output power. The resonant frequency increases less than indicated from simulation and approaches that of a straight tensioned cable when the force associated with the tension in the beam becomes much greater than the beam stiffness. The test results agree with the theoretical analysis presented

    A micro electromagnetic generator for vibration energy harvesting

    No full text
    Vibration energy harvesting is receiving a considerable amount of interest as a means for powering wireless sensor nodes. This paper presents a small (component volume 0.1 cm3, practical volume 0.15 cm3) electromagnetic generator utilizing discrete components and optimized for a low ambient vibration level based upon real application data. The generator uses four magnets arranged on an etched cantilever with a wound coil located within the moving magnetic field. Magnet size and coil properties were optimized, with the final device producing 46 µW in a resistive load of 4 k? from just 0.59 m s-2 acceleration levels at its resonant frequency of 52 Hz. A voltage of 428 mVrms was obtained from the generator with a 2300 turn coil which has proved sufficient for subsequent rectification and voltage step-up circuitry. The generator delivers 30% of the power supplied from the environment to useful electrical power in the load. This generator compares very favourably with other demonstrated examples in the literature, both in terms of normalized power density and efficiency

    Energy harvesting from human and machine motion for wireless electronic devices

    No full text
    Published versio

    Real World Assessment of an Auto-parametric Electromagnetic Vibration Energy Harvester

    Get PDF
    The convention within the eld of vibration energy harvesting (VEH) has revolved around designing resonators with natural frequencies that match single fixed frequency sinusoidal input. However, real world vibrations can be random, multi-frequency, broadband and time-varying in nature. Building upon previous work on auto-parametric resonance, the fundamentally different approach allows multiple axes vibration and has the potential to achieve higher power density as well as wider operational frequency bandwidth. This paper presents the power response of a packaged auto-parametric VEH prototype (practical operational volume 126 cm^3) towards various real world vibration sources including vibration of a bridge, a compressor motor as well as an automobile. At auto-parametric resonance (driven at 23.5 Hz and 1 grms), the prototype can output a peak of 78.9 mW and 4.5 Hz of -3dB bandwidth. Furthermore, up to ~1 mW of average power output was observed from the harvester on the Forth Road Bridge. The harvested electrical energy from various real world sources were used to power up a power conditioning circuit, a wireless sensor mote, a MEMS (micro-electromechanical system) accelerometer and other low power sensors. This demonstrates the concept of self-sustaining vibration-powered wireless sensor systems in real world scenarios, to potentially realise maintenance-free autonomous structural health and condition monitoring.This work was supported by EPSRC (grant EP/L010917/1) and the Cambridge Centre for Smart Infrastructure and Construction

    Parylene-based electret power generators

    Get PDF
    n electret power generator is developed using a new electret made of a charged parylene HT® thin-film polymer. Here, parylene HT® is a room-temperature chemical-vapor-deposited thin-film polymer that is MEMS and CMOS compatible. With corona charge implantation, the surface charge density of parylene HT® is measured as high as 3.69 mC m^−2. Moreover, it is found that, with annealing at 400 °C for 1 h before charge implantation, both the long-term stability and the high-temperature reliability of the electret are improved. For the generator, a new design of the stator/rotor is also developed. The new micro electret generator does not require any sophisticated gap-controlling structure such as tethers. With the conformal coating capability of parylene HT®, it is also feasible to have the electret on the rotors, which is made of either a piece of metal or an insulator. The maximum power output, 17.98 µW, is obtained at 50 Hz with an external load of 80 MΩ. For low frequencies, the generator can harvest 7.7 µW at 10 Hz and 8.23 µW at 20 Hz
    corecore