81 research outputs found

    Double smart energy harvesting system for self-powered industrial IoT

    Get PDF
    312 p. 335 p. (confidencial)Future factories would be based on the Industry 4.0 paradigm. IndustrialInternet of Things (IIoT) represent a part of the solution in this field. Asautonomous systems, powering challenges could be solved using energy harvestingtechnology. The present thesis work combines two alternatives of energy input andmanagement on a single architecture. A mini-reactor and an indoor photovoltaiccell as energy harvesters and a double power manager with AC/DC and DC/DCconverters controlled by a low power single controller. Furthermore, theaforementioned energy management is improved with artificial intelligencetechniques, which allows a smart and optimal energy management. Besides, theharvested energy is going to be stored in a low power supercapacitor. The workconcludes with the integration of these solutions making IIoT self-powered devices.IK4 Teknike

    Digital-based analog processing in nanoscale CMOS ICs for IoT applications

    Get PDF
    The Internet-of-Things (IoT) concept has been opening up a variety of applications, such as urban and environmental monitoring, smart health, surveillance, and home automation. Most of these IoT applications require more and more power/area efficient Complemen tary Metal–Oxide–Semiconductor (CMOS) systems and faster prototypes (lower time-to market), demanding special modifications in the current IoT design system bottleneck: the analog/RF interfaces. Specially after the 2000s, it is evident that there have been significant improvements in CMOS digital circuits when compared to analog building blocks. Digital circuits have been taking advantage of CMOS technology scaling in terms of speed, power consump tion, and cost, while the techniques running behind the analog signal processing are still lagging. To decrease this historical gap, there has been an increasing trend in finding alternative IC design strategies to implement typical analog functions exploiting Digital in-Concept Design Methodologies (DCDM). This idea of re-thinking analog functions in digital terms has shown that Analog ICs blocks can also avail of the feature-size shrinking and energy efficiency of new technologies. This thesis deals with the development of DCDM, demonstrating its compatibility for Ultra-Low-Voltage (ULV) and Power (ULP) IoT applications. This work proves this state ment through the proposing of new digital-based analog blocks, such as an Operational Transconductance Amplifiers (OTAs) and an ac-coupled Bio-signal Amplifier (BioAmp). As an initial contribution, for the first time, a silicon demonstration of an embryonic Digital-Based OTA (DB-OTA) published in 2013 is exhibited. The fabricated DB-OTA test chip occupies a compact area of 1,426 µm2 , operating at supply voltages (VDD) down to 300 mV, consuming only 590 pW while driving a capacitive load of 80pF. With a Total Harmonic Distortion (THD) lower than 5% for a 100mV input signal swing, its measured small-signal figure of merit (FOMS) and large-signal figure of merit (FOML) are 2,101 V −1 and 1,070, respectively. To the best of this thesis author’s knowledge, this measured power is the lowest reported to date in OTA literature, and its figures of merit are the best in sub-500mV OTAs reported to date. As the second step, mainly due to the robustness limitation of previous DB-OTA, a novel calibration-free digital-based topology is proposed, named here as Digital OTA (DIG OTA). A 180-nm DIGOTA test chip is also developed exhibiting an area below the 1000 µm2 wall, 2.4nW power under 150pF load, and a minimum VDD of 0.25 V. The proposed DIGOTA is more digital-like compared with DB-OTA since no pseudo-resistor is needed. As the last contribution, the previously proposed DIGOTA is then used as a building block to demonstrate the operation principle of power-efficient ULV and ultra-low area (ULA) fully-differential, digital-based Operational Transconductance Amplifier (OTA), suitable for microscale biosensing applications (BioDIGOTA) such as extreme low area Body Dust. Measured results in 180nm CMOS confirm that the proposed BioDIGOTA can work with a supply voltage down to 400 mV, consuming only 95 nW. The BioDIGOTA layout occupies only 0.022 mm2 of total silicon area, lowering the area by 3.22X times compared to the current state of the art while keeping reasonable system performance, such as 7.6 Noise Efficiency Factor (NEF) with 1.25 µVRMS input-referred noise over a 10 Hz bandwidth, 1.8% of THD, 62 dB of the common-mode rejection ratio (CMRR) and 55 dB of power supply rejection ratio (PSRR). After reviewing the current DCDM trend and all proposed silicon demonstrations, the thesis concludes that, despite the current analog design strategies involved during the analog block development

    Energy harvesting from body motion using rotational micro-generation

    Get PDF
    Autonomous system applications are typically limited by the power supply operational lifetime when battery replacement is difficult or costly. A trade-off between battery size and battery life is usually calculated to determine the device capability and lifespan. As a result, energy harvesting research has gained importance as society searches for alternative energy sources for power generation. For instance, energy harvesting has been a proven alternative for powering solar-based calculators and self-winding wristwatches. Thus, the use of energy harvesting technology can make it possible to assist or replace batteries for portable, wearable, or surgically-implantable autonomous systems. Applications such as cardiac pacemakers or electrical stimulation applications can benefit from this approach since the number of surgeries for battery replacement can be reduced or eliminated. Research on energy scavenging from body motion has been investigated to evaluate the feasibility of powering wearable or implantable systems. Energy from walking has been previously extracted using generators placed on shoes, backpacks, and knee braces while producing power levels ranging from milliwatts to watts. The research presented in this paper examines the available power from walking and running at several body locations. The ankle, knee, hip, chest, wrist, elbow, upper arm, side of the head, and back of the head were the chosen target localizations. Joints were preferred since they experience the most drastic acceleration changes. For this, a motor-driven treadmill test was performed on 11 healthy individuals at several walking (1-4 mph) and running (2-5 mph) speeds. The treadmill test provided the acceleration magnitudes from the listed body locations. Power can be estimated from the treadmill evaluation since it is proportional to the acceleration and frequency of occurrence. Available power output from walking was determined to be greater than 1mW/cm³ for most body locations while being over 10mW/cm³ at the foot and ankle locations. Available power from running was found to be almost 10 times higher than that from walking. Most energy harvester topologies use linear generator approaches that are well suited to fixed-frequency vibrations with sub-millimeter amplitude oscillations. In contrast, body motion is characterized with a wide frequency spectrum and larger amplitudes. A generator prototype based on self-winding wristwatches is deemed to be appropriate for harvesting body motion since it is not limited to operate at fixed-frequencies or restricted displacements. Electromagnetic generation is typically favored because of its slightly higher power output per unit volume. Then, a nonharmonic oscillating rotational energy scavenger prototype is proposed to harness body motion. The electromagnetic generator follows the approach from small wind turbine designs that overcome the lack of a gearbox by using a larger number of coil and magnets arrangements. The device presented here is composed of a rotor with multiple-pole permanent magnets having an eccentric weight and a stator composed of stacked planar coils. The rotor oscillations induce a voltage on the planar coil due to the eccentric mass unbalance produced by body motion. A meso-scale prototype device was then built and evaluated for energy generation. The meso-scale casing and rotor were constructed on PMMA with the help of a CNC mill machine. Commercially available discrete magnets were encased in a 25mm rotor. Commercial copper-coated polyimide film was employed to manufacture the planar coils using MEMS fabrication processes. Jewel bearings were used to finalize the arrangement. The prototypes were also tested at the listed body locations. A meso-scale generator with a 2-layer coil was capable to extract up to 234 µW of power at the ankle while walking at 3mph with a 2cm³ prototype for a power density of 117 µW/cm³. This dissertation presents the analysis of available power from walking and running at different speeds and the development of an unobtrusive miniature energy harvesting generator for body motion. Power generation indicates the possibility of powering devices by extracting energy from body motion

    Energy Harvesting for Wireless and Less-Wired Sensors in Gas Turbines

    Get PDF
    Four types of energy harvesters aimed for gas turbine applications were developed during this thesis. The unique gas turbine environment shaped the design- and material choices. A semiconductor thermoelectric harvester was built for a location in the gas turbine with active cooling at 600\ub0C, with 800\ub0C wall temperature. The thesis covers the material synthesis, design, assembly and proof-of-concept tests of this harvester at 800\ub0C. A metal thermoelectric harvester was also built, but instead for locations without active cooling. The harvester design is long metal strips, capable of reaching active cooling far away. This harvester was successfully used to power wireless sensors and reached 290 μW power output after power management electronics. Two different types of piezoelectric harvesters were developed, both consisting of coupled off-the-shelf cantilevers. The development included simulations, analytic models and assembly/measurements on harvesters. The first design was a 2-degree-of-freedom folded coupled harvester which after optimizations achieved a minimum of 2.75 V in the frequency range 92-162 Hz with peak power output of 1.80 mW. The second design was a 4-degree-of-freedom self-tuning harvester, showing increased 3 dB-bandwidth from 8 Hz to 12 Hz with the use of a sliding weight

    Power management for energy harvesting

    Get PDF
    The use of wireless sensor networks in aircraft health management grew exponentially over the past few decades. Wireless sensor networks provide technology that reduces the amount of wiring for aircraft, thereby reducing the weight and cost of aircraft. One of the most significant limitations in the use of wireless sensor networks in aircraft health management systems is the availability of power sources. Developing Wireless Sensor Network nodes that can generate and harvest their autonomous power supply continuously is a bottleneck that has been the preoccupation of engineers for many years. The amount of energy a network of Wireless Sensors can harvest fluctuates and is difficult to predict. As a result, existing predictors of energy harvesting are prone to errors. Models-free schemes such as expert systems are thus preferred for energy management strategies. The main aim of this thesis is to propose expert-based systems for energy harvesting in aircraft to enhance wireless sensor nodes life span by improving energy harvesting, energy storage and packet loss probability. In this context, a novel integrated approach based on the Markov chain was proposed for energy harvesting in aircraft. Simulation results and quantitative analysis showed that the integration of Piezoelectric and Thermoelectric harvesters with stochastic scheduling had a better performance in terms of energy storage, energy harvesting and packet loss probability. There was also an increase in energy storage with five Markov states compared to that of two Markov states. The packet loss probability of the integrated approach with five Markov states was better than that of two Markov states. The results also showed that the integrated approach with five Markov states harvested more energy than two Markov states. The novel integration of LTspice and NS-3 simulators was proposed. The LTspice and NS-3 integration was validated by deploying the Fuzzy logic control approach in energy harvesting. Simulation results and quantitative analysis based on Fuzzy control logic expert system indicated that the integration of LTspice and NS-3 was found to be better in energy harvesting compared to non-fuzzy control systems. The downtime ratio and energy utilization efficiency of the wireless sensor nodes were also found to be better than non-fuzzy control. The power management based LEACH routing protocol was also proposed. The simulation results and quantitative analysis showed that the average harvested energy based on the LEACH routing protocol deployed with fuzzy logic and Markov chain was better compared to those with direct communication based on Markov chain and fuzzy logic systems.Aerospac

    Design, Modelling, Fabrication & Testing of a Miniature Piezoelectric-based EMF Energy Harvester

    Get PDF
    Wireless sensing applications have extended into power transmission line monitoring applications. Minimal power consumption of sensor electronics have enabled kinetic energy harvesting systems to provides a means of self sustainability in the form of parasitic energy harvesting from power transmission lines. With this goal in mind, a miniature piezoelectric bimorph cantilever harvester has been developed using a magnetic tip mass which interacts with the oscillating magnetic flux surrounding power transmission wires. The focus of this thesis is develop an analytical model which can be used to optimize the amount of piezoelectric material to support sensory electronics. Special emphasis has also been placed on magnet orientation and geometry to ensure optimal magnetic flux interaction between input and output mechanisms. A single prototype harvester is designed with an arbitrary piezoelectric material length and experimentally validated at different conductor wire currents. The analytical model shows excellent agreement in frequency prediction for the prototype tested. Two damping techniques are used to experimentally extract modal damping ratios to predict peak mechanical and electrical responses at resonance frequencies. The miniature prototype design is less than 30 mm in length with only 10 mm piezoelectric material to produce a total volume of 154 10^-12 cm^3. The power output is measured at 174.1 W of power when positioned over top a 10 AWG copper conductor a distance of 6 mm with approximately 16 Amps of current passing though the conductor

    Design of Analog CMOS Circuits for Batteryless Implantable Telemetry Systems

    Get PDF
    A wireless biomedical telemetry system is a device that collects biomedical signal measurements and transmits data through wireless RF communication. Testing medical treatments often involves experimentation on small laboratory animals, such as genetically modified mice and rats. Using batteries as a power source results in many practical issues, such as increased size of the implant and limited operating lifetime. Wireless power harvesting for implantable biomedical devices removes the need for batteries integrated into the implant. This will reduce device size and remove the need for surgical replacement due to battery depletion. Resonant inductive coupling achieves wireless power transfer in a manner modelled by a step down transformer. With this methodology, power harvesting for an implantable device is realized with the use of a large primary coil external to the subject, and a smaller secondary coil integrated into the implant. The signal received from the secondary coil must be regulated to provide a stable direct current (DC) power supply, which will be used to power the electronics in the implantable device. The focus of this work is on development of an electronic front-end for wireless powering of an implantable biomedical device. The energy harvesting front-end circuit is comprised of a rectifier, LDO regulator, and a temperature insensitive voltage reference. Physical design of the front-end circuit is developed in 0.13um CMOS technology with careful attention to analog layout issues. Post-layout simulation results are presented for each sub-block as well as the full front-end structure. The LDO regulator operates with supply voltages in the range of 1V to 1.5V with quiescent current of 10.5uA The complete power receiver front-end has a power conversion efficiency of up to 29%

    45-nm SOI CMOS Bluetooth Electrochemical Sensor for Continuous Glucose Monitoring

    Get PDF
    Due to increasing rates of diabetes, non-invasive glucose monitoring systems will become critical to improving health outcomes for an increasing patient population. Bluetooth integration for such a system has been previously unattainable due to the prohibitive energy consumption. However, enabling Bluetooth allows for widespread adoption due to the ubiquity of Bluetooth-enabled mobile devices. The objective of this thesis is to demonstrate the feasibility of a Bluetooth-based energy-harvesting glucose sensor for contact-lens integration using 45~nm silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) technology. The proposed glucose monitoring system includes a Bluetooth transmitter implemented as a two-point closed loop PLL modulator, a sensor potentiostat, and a 1st-order incremental delta-sigma analog-to-digital converter (IADC). This work details the complete system design including derivation of top-level specifications such as glucose sensing range, Bluetooth protocol timing, energy consumption, and circuit specifications such as carrier frequency range, output power, phase-noise performance, stability, resolution, signal-to-noise ratio, and power consumption. Three test chips were designed to prototype the system, and two of these were experimentally verified. Chip 1 includes a partial implementation of a phase-locked-loop (PLL) which includes a voltage-controlled-oscillator (VCO), frequency divider, and phase-frequency detector (PFD). Chip 2 includes the design of the sensor potentiostat and IADC. Finally, Chip 3 combines the circuitry of Chip 1 and Chip 2, along with a charge-pump, loop-filter and power amplifier to complete the system. Chip 1 DC power consumption was measured to be 204.8~μ\muW, while oscillating at 2.441 GHz with an output power PoutP_{out} of -35.8 dBm, phase noise at 1 MHz offset L(1 MHz)L(1\text{ MHz}) of -108.5 dBc/Hz, and an oscillator figure of merit (FOM) of 183.44dB. Chip 2 achieves a total DC power consumption of 5.75~μ\muW. The system has a dynamic range of 0.15~nA -- 100~nA at 10-bit resolution. The integral non-linearity (INL) and differential non-linearity (DNL) of the IADC were measured to be -6~LSB/±\pm0.3~LSB respectively with a conversion time of 65.56~ms. This work achieves the best duty-cycled DC power consumption compared to similar glucose monitoring systems, while providing sufficient performance and range using Bluetooth
    corecore