12 research outputs found

    Performance assessment in brain-computer interface-based augmentative and alternative communication

    Full text link
    Abstract A large number of incommensurable metrics are currently used to report the performance of brain-computer interfaces (BCI) used for augmentative and alterative communication (AAC). The lack of standard metrics precludes the comparison of different BCI-based AAC systems, hindering rapid growth and development of this technology. This paper presents a review of the metrics that have been used to report performance of BCIs used for AAC from January 2005 to January 2012. We distinguish between Level 1 metrics used to report performance at the output of the BCI Control Module, which translates brain signals into logical control output, and Level 2 metrics at the Selection Enhancement Module, which translates logical control to semantic control. We recommend that: (1) the commensurate metrics Mutual Information or Information Transfer Rate (ITR) be used to report Level 1 BCI performance, as these metrics represent information throughput, which is of interest in BCIs for AAC; 2) the BCI-Utility metric be used to report Level 2 BCI performance, as it is capable of handling all current methods of improving BCI performance; (3) these metrics should be supplemented by information specific to each unique BCI configuration; and (4) studies involving Selection Enhancement Modules should report performance at both Level 1 and Level 2 in the BCI system. Following these recommendations will enable efficient comparison between both BCI Control and Selection Enhancement Modules, accelerating research and development of BCI-based AAC systems.http://deepblue.lib.umich.edu/bitstream/2027.42/115465/1/12938_2012_Article_658.pd

    Errare machinale est: The use of error-related potentials in brain-machine interfaces

    Get PDF
    The ability to recognize errors is crucial for efficient behavior. Numerous studies have identified electrophysiological correlates of error recognition in the human brain (error-related potentials, ErrPs). Consequently, it has been proposed to use these signals to improve human-computer interaction (HCI) or brain-machine interfacing (BMI). Here, we present a review of over a decade of developments towards this goal. This body of work provides consistent evidence that ErrPs can be successfully detected on a single-trial basis, and that they can be effectively used in both HCI and BMI applications. We first describe the ErrP phenomenon and follow up with an analysis of different strategies to increase the robustness of a system by incorporating single-trial ErrP recognition, either by correcting the machine's actions or by providing means for its error-based adaptation. These approaches can be applied both when the user employs traditional HCI input devices or in combination with another BMI channel. Finally, we discuss the current challenges that have to be overcome in order to fully integrate ErrPs into practical applications. This includes, in particular, the characterization of such signals during real(istic) applications, as well as the possibility of extracting richer information from them, going beyond the time-locked decoding that dominates current approaches

    Workshops of the Sixth International Brain–Computer Interface Meeting: brain–computer interfaces past, present, and future

    Get PDF
    Brain–computer interfaces (BCI) (also referred to as brain–machine interfaces; BMI) are, by definition, an interface between the human brain and a technological application. Brain activity for interpretation by the BCI can be acquired with either invasive or non-invasive methods. The key point is that the signals that are interpreted come directly from the brain, bypassing sensorimotor output channels that may or may not have impaired function. This paper provides a concise glimpse of the breadth of BCI research and development topics covered by the workshops of the 6th International Brain–Computer Interface Meeting

    Valutazione degli stati mentali attraverso l'utilizzo di interfacce cervello-computer passive

    Get PDF
    The monitoring of cognitive functions aims at gaining information about the current cognitive state of the user by decoding brain signals. In recent years, this approach allowed to acquire valuable information about the cognitive aspects regarding the interaction of humans with external world. From this consideration, researchers started to consider passive application of brain–computer interface (BCI) in order to provide a novel input modality for technical systems solely based on brain activity. The objective of this thesis is to demonstrate how the passive Brain Computer Interfaces (BCIs) applications can be used to assess the mental states of the users, in order to improve the human machine interaction. Two main studies has been proposed. The first one allows to investigate whatever the Event Related Potentials (ERPs) morphological variations can be used to predict the users’ mental states (e.g. attentional resources, mental workload) during different reactive BCI tasks (e.g. P300-based BCIs), and if these information can predict the subjects’ performance in performing the tasks. In the second study, a passive BCI system able to online estimate the mental workload of the user by relying on the combination of the EEG and the ECG biosignals has been proposed. The latter study has been performed by simulating an operative scenario, in which the occurrence of errors or lack of performance could have significant consequences. The results showed that the proposed system is able to estimate online the mental workload of the subjects discriminating three different difficulty level of the tasks ensuring a high reliability.La valutazione delle funzioni cognitive ha l’obbiettivo di ottenere informazioni sullo stato mentale attuale dell'utente, attraverso la decodifica dei segnali cerebrali. Negli ultimi anni, questo approccio ha consentito di indagare informazioni preziose sugli aspetti cognitivi riguardanti l'interazione tra l’uomo ed il mondo esterno. In base a queste considerazioni, recentemente si è considerata in letteratura la possibilità di utilizzare le interfacce cervello computer passive (BCI passivi) per interagire con dispositivi esterni, sfruttando l’attività spontanea dell’utente. L'obiettivo di questa tesi è quello di dimostrare come le interfacce cervello computer passive possano essere utilizzate per valutare lo stato mentale dell’utente, al fine di migliorare l'interazione uomo-macchina. Sono stati presentati due studi principali. Il primo ha l’obbiettivo di investigare le variazioni morfologiche dei potenziali evento correlati (ERP), al fine di associarle agli stati mentali dell’utente (es. attenzione, carico di lavoro mentale) durante l’utilizzo di BCI reattive, e come predittori delle performance raggiunte dai soggetti. Nel secondo studio è stato sviluppato e validato un sistema BCI passivo in grado di stimare il carico di lavoro mentale dell'utente durante task operative, attraverso la combinazione del segnale elettroencefalografico (EEG) ed elettrocardiografico (ECG). Quest'ultimo studio è stato effettuato simulando uno scenario operativo, in cui il verificarsi di errori da parte dell’operatore o il calo di prestazioni poteva avere conseguenze importanti. I risultati hanno mostrato che il sistema proposto è in grado di discriminare il carico di lavoro mentale percepito dall’utente su tre livelli di difficoltà, garantendo un’elevata affidabilità
    corecore