30 research outputs found

    A Self-Organising Model of Thermoregulatory Huddling

    Get PDF
    Endotherms such as rats and mice huddle together to keep warm. The huddle is considered to be an example of a self-organising system, because complex properties of the collective group behaviour are thought to emerge spontaneously through simple interactions between individuals. Groups of rodent pups display two such emergent properties. First, huddling undergoes a ‘phase transition’, such that pups start to aggregate rapidly as the temperature of the environment falls below a critical temperature. Second, the huddle maintains a constant ‘pup flow’, where cooler pups at the periphery continually displace warmer pups at the centre. We set out to test whether these complex group behaviours can emerge spontaneously from local interactions between individuals. We designed a model using a minimal set of assumptions about how individual pups interact, by simply turning towards heat sources, and show in computer simulations that the model reproduces the first emergent property—the phase transition. However, this minimal model tends to produce an unnatural behaviour where several smaller aggregates emerge rather than one large huddle. We found that an extension of the minimal model to include heat exchange between pups allows the group to maintain one large huddle but eradicates the phase transition, whereas inclusion of an additional homeostatic term recovers the phase transition for large huddles. As an unanticipated consequence, the extended model also naturally gave rise to the second observed emergent property—a continuous pup flow. The model therefore serves as a minimal description of huddling as a self-organising system, and as an existence proof that group-level huddling dynamics emerge spontaneously through simple interactions between individuals. We derive a specific testable prediction: Increasing the capacity of the individual to generate or conserve heat will increase the range of ambient temperatures over which adaptive thermoregulatory huddling will emerge

    Self-organising Thermoregulatory Huddling in a Model of Soft Deformable Littermates

    Get PDF
    Thermoregulatory huddling behaviours dominate the early experiences of developing rodents, and constrain the patterns of sensory and motor input that drive neural plasticity. Huddling is a complex emergent group behaviour, thought to provide an early template for the development of adult social systems, and to constrain natural selection on metabolic physiology. However, huddling behaviours are governed by simple rules of interaction between individuals, which can be described in terms of the thermodynamics of heat exchange, and can be easily controlled by manipulation of the environment temperature. Thermoregulatory huddling thus provides an opportunity to investigate the effects of early experience on brain development in a social, developmental, and evolutionary context, through controlled experimentation. This paper demonstrates that thermoregulatory huddling behaviours can self-organise in a simulation of rodent littermates modelled as soft-deformable bodies that exchange heat during contact. The paper presents a novel methodology, based on techniques in computer animation, for simulating the early sensory and motor experiences of the developing rodent

    Self-organised criticality in the evolution of a thermodynamic model of rodent thermoregulatory huddling

    Get PDF
    A thermodynamic model of thermoregulatory huddling interactions between endotherms is developed. The model is presented as a Monte Carlo algorithm in which animals are iteratively exchanged between groups, with a probability of exchanging groups defined in terms of the temperature of the environment and the body temperatures of the animals. The temperature-dependent exchange of animals between groups is shown to reproduce a second-order critical phase transition, i.e., a smooth switch to huddling when the environment gets colder, as measured in recent experiments. A peak in the rate at which group sizes change, referred to as pup flow, is predicted at the critical temperature of the phase transition, consistent with a thermodynamic description of huddling, and with a description of the huddle as a self-organising system. The model was subjected to a simple evolutionary procedure, by iteratively substituting the physiologies of individuals that fail to balance the costs of thermoregulation (by huddling in groups) with the costs of thermogenesis (by contributing heat). The resulting tension between cooperative and competitive interactions was found to generate a phenomenon called self-organised criticality, as evidenced by the emergence of avalanches in fitness that propagate across many generations. The emergence of avalanches reveals how huddling can introduce correlations in fitness between individuals and thereby constrain evolutionary dynamics. Finally, a full agent-based model of huddling interactions is also shown to generate criticality when subjected to the same evolutionary pressures. The agent-based model is related to the Monte Carlo model in the way that a Vicsek model is related to an Ising model in statistical physics. Huddling therefore presents an opportunity to use thermodynamic theory to study an emergent adaptive animal behaviour. In more general terms, huddling is proposed as an ideal system for investigating the interaction between self-organisation and natural selection empirically

    Self-organised criticality in the evolution of a thermodynamic model of rodent thermoregulatory huddling

    Get PDF
    A thermodynamic model of thermoregulatory huddling interactions between endotherms is developed. The model is presented as a Monte Carlo algorithm in which animals are iteratively exchanged between groups, with a probability of exchanging groups defined in terms of the temperature of the environment and the body temperatures of the animals. The temperature-dependent exchange of animals between groups is shown to reproduce a second-order critical phase transition, i.e., a smooth switch to huddling when the environment gets colder, as measured in recent experiments. A peak in the rate at which group sizes change, referred to as pup flow, is predicted at the critical temperature of the phase transition, consistent with a thermodynamic description of huddling, and with a description of the huddle as a self-organising system. The model was subjected to a simple evolutionary procedure, by iteratively substituting the physiologies of individuals that fail to balance the costs of thermoregulation (by huddling in groups) with the costs of thermogenesis (by contributing heat). The resulting tension between cooperative and competitive interactions was found to generate a phenomenon called self-organised criticality, as evidenced by the emergence of avalanches in fitness that propagate across many generations. The emergence of avalanches reveals how huddling can introduce correlations in fitness between individuals and thereby constrain evolutionary dynamics. Finally, a full agent-based model of huddling interactions is also shown to generate criticality when subjected to the same evolutionary pressures. The agent-based model is related to the Monte Carlo model in the way that a Vicsek model is related to an Ising model in statistical physics. Huddling therefore presents an opportunity to use thermodynamic theory to study an emergent adaptive animal behaviour. In more general terms, huddling is proposed as an ideal system for investigating the interaction between self-organisation and natural selection empirically

    How self-organization can guide evolution

    Get PDF
    Self-organization and natural selection are fundamental forces that shape the natural world. Substantial progress in understanding how these forces interact has been made through the study of abstract models. Further progress may be made by identifying a model system in which the interaction between self-organization and selection can be investigated empirically. To this end, we investigate how the self-organizing thermoregulatory huddling behaviours displayed by many species of mammals might influence natural selection of the genetic components of metabolism. By applying a simple evolutionary algorithm to a wellestablished model of the interactions between environmental, morphological, physiological and behavioural components of thermoregulation, we arrive at a clear, but counterintuitive, prediction: rodents that are able to huddle together in cold environments should evolve a lower thermal conductance at a faster rate than animals reared in isolation. The model therefore explains how evolution can be accelerated as a consequence of relaxed selection, and it predicts how the effect may be exaggerated by an increase in the litter size, i.e. by an increase in the capacity to use huddling behaviours for thermoregulation. Confirmation of these predictions in future experiments with rodents would constitute strong evidence of a mechanism by which self-organization can guide natural selection

    Modelling the emergence of rodent filial huddling from physiological huddling

    Get PDF
    Huddling behaviour in neonatal rodents reduces the metabolic costs of physiological thermoregulation. However, animals continue to huddle into adulthood, at ambient temperatures where they are able to sustain a basal metabolism in isolation from the huddle. This 'filial huddling' in older animals is known to be guided by olfactory rather than thermal cues. The present study aimed to test whether thermally rewarding contacts between young mice, experienced when thermogenesis in brown adipose fat tissue (BAT) is highest, could give rise to olfactory preferences that persist as filial huddling interactions in adults. To this end, a simple model was constructed to fit existing data on the development of mouse thermal physiology and behaviour. The form of the model that emerged yields a remarkable explanation for filial huddling; associative learning maintains huddling into adulthood via processes that reduce thermodynamic entropy from BAT-metabolism and increase information about social ordering amongst littermates

    Scaffolding layered control architectures through constraint closure : insights into brain evolution and development

    Get PDF
    The functional organization of the mammalian brain can be considered to form a layered control architecture, but how this complex system has emerged through evolution and is constructed during development remains a puzzle. Here we consider brain organization through the framework of constraint closure, viewed as a general characteristic of living systems, that they are composed of multiple sub-systems that constrain each other at different timescales. We do so by developing a new formalism for constraint closure, inspired by a previous model showing how within-lifetime dynamics can constrain between-lifetime dynamics, and we demonstrate how this interaction can be generalized to multi-layered systems. Through this model, we consider brain organization in the context of two major examples of constraint closure—physiological regulation and visual orienting. Our analysis draws attention to the capacity of layered brain architectures to scaffold themselves across multiple timescales, including the ability of cortical processes to constrain the evolution of sub-cortical processes, and of the latter to constrain the space in which cortical systems self-organize and refine themselves

    Towards a model of the emergence of action space maps in the motor cortex

    Get PDF
    Self-organising maps can recreate many of the essential features of the known functional organisation of primary cortical areas in the mammalian brain. According to such models, cortical maps represent the spatial-temporal structure of sensory and/or motor input patterns registered during the early development of an animal, and this structure is determined by interactions between the neural control architecture, the body morphology, and the environmental context in which the animal develops. We present a minimal model of pseudo-physical interactions between an animat body and its environment, which includes each of these elements, and show how cortical map self-organisation is affected by manipulations to each element in turn. We find that maps robustly self-organise to reveal a homuncular organisation, where nearby body parts tend to be represented by adjacent neurons, but suggest that a homunculus caricature of these maps masks the true organisation as one that remaps from sensory coordinates into `action spaces' for controlling movements of the body to obtain environmental reward. The results motivate a reappraisal of the classic motor cortex homunculus, and demonstrate the utility of an animat modelling approach for investigating the essential constraints that affect cortical map self-organisation

    Welfare of domestic birds and rabbits transported in containers

    Get PDF
    This opinion, produced upon a request from the European Commission, focuses on transport of domestic birds and rabbits in containers (e.g. any crate, box, receptacle or other rigid structure used for the transport of animals, but not the means of transport itself). It describes and assesses current transport practices in the EU, based on data from literature, Member States and expert opinion. The species and categories of domestic birds assessed were mainly chickens for meat (broilers), end-of-lay hens and day-old chicks. They included to a lesser extent pullets, turkeys, ducks, geese, quails and game birds, due to limited scientific evidence. The opinion focuses on road transport to slaughterhouses or to production sites. For day-old chicks, air transport is also addressed. The relevant stages of transport considered are preparation, loading, journey, arrival and uncrating. Welfare consequences associated with current transport practices were identified for each stage. For loading and uncrating, the highly relevant welfare consequences identified are handling stress, injuries, restriction of movement and sensory overstimulation. For the journey and arrival, injuries, restriction of movement, sensory overstimulation, motion stress, heat stress, cold stress, prolonged hunger and prolonged thirst are identified as highly relevant. For each welfare consequence, animal-based measures (ABMs) and hazards were identified and assessed, and both preventive and corrective or mitigative measures proposed. Recommendations on quantitative criteria to prevent or mitigate welfare consequences are provided for microclimatic conditions, space allowances and journey times for all categories of animals, where scientific evidence and expert opinion support such outcomes.info:eu-repo/semantics/publishedVersio
    corecore