2,117 research outputs found

    Can Evil IoT Twins Be Identified? Now Yes, a Hardware Behavioral Fingerprinting Methodology

    Full text link
    The connectivity and resource-constrained nature of IoT, and in particular single-board devices, opens up to cybersecurity concerns affecting the Industrial Internet of Things (IIoT). One of the most important is the presence of evil IoT twins. Evil IoT twins are malicious devices, with identical hardware and software configurations to authorized ones, that can provoke sensitive information leakages, data poisoning, or privilege escalation in industrial scenarios. Combining behavioral fingerprinting and Machine/Deep Learning (ML/DL) techniques is a promising solution to identify evil IoT twins by detecting minor performance differences generated by imperfections in manufacturing. However, existing solutions are not suitable for single-board devices because they do not consider their hardware and software limitations, underestimate critical aspects during the identification performance evaluation, and do not explore the potential of ML/DL techniques. Moreover, there is a dramatic lack of work explaining essential aspects to considering during the identification of identical devices. This work proposes an ML/DL-oriented methodology that uses behavioral fingerprinting to identify identical single-board devices. The methodology leverages the different built-in components of the system, comparing their internal behavior with each other to detect variations that occurred in manufacturing processes. The validation has been performed in a real environment composed of identical Raspberry Pi 4 Model B devices, achieving the identification for all devices by setting a 50% threshold in the evaluation process. Finally, a discussion compares the proposed solution with related work and provides important lessons learned and limitations

    Bootstrap–CURE: A novel clustering approach for sensor data: an application to 3D printing industry

    Get PDF
    The agenda of Industry 4.0 highlights smart manufacturing by making machines smart enough to make data-driven decisions. Large-scale 3D printers, being one of the important pillars in Industry 4.0, are equipped with smart sensors to continuously monitor print processes and make automated decisions. One of the biggest challenges in decision autonomy is to consume data quickly along the process and extract knowledge from the printer, suitable for improving the printing process. This paper presents the innovative unsupervised learning approach, bootstrap–CURE, to decode the sensor patterns and operation modes of 3D printers by analyzing multivariate sensor data. An automatic technique to detect the suitable number of clusters using the dendrogram is developed. The proposed methodology is scalable and significantly reduces computational cost as compared to classical CURE. A distinct combination of the 3D printer’s sensors is found, and its impact on the printing process is also discussed. A real application is presented to illustrate the performance and usefulness of the proposal. In addition, a new state of the art for sensor data analysis is presented.This work was supported in part by KEMLG-at-IDEAI (UPC) under Grant SGR-2017-574 from the Catalan government.Peer ReviewedPostprint (published version

    Anomaly Detection and Exploratory Causal Analysis for SAP HANA

    Get PDF
    Nowadays, the good functioning of the equipment, networks and systems will be the key for the business of a company to continue operating because it is never avoidable for the companies to use information technology to support their business in the era of big data. However, the technology is never infallible, faults that give rise to sometimes critical situations may appear at any time. To detect and prevent failures, it is very essential to have a good monitoring system which is responsible for controlling the technology used by a company (hardware, networks and communications, operating systems or applications, among others) in order to analyze their operation and performance, and to detect and alert about possible errors. The aim of this thesis is thus to further advance the field of anomaly detection and exploratory causal inference which are two major research areas in a monitoring system, to provide efficient algorithms with regards to the usability, maintainability and scalability. The analyzed results can be viewed as a starting point for the root cause analysis of the system performance issues and to avoid falls in the system or minimize the time of resolution of the issues in the future. The algorithms were performed on the historical data of SAP HANA database at last and the results gained in this thesis indicate that the tools have succeeded in providing some useful information for diagnosing the performance issues of the system

    IoT Anomaly Detection Methods and Applications: A Survey

    Full text link
    Ongoing research on anomaly detection for the Internet of Things (IoT) is a rapidly expanding field. This growth necessitates an examination of application trends and current gaps. The vast majority of those publications are in areas such as network and infrastructure security, sensor monitoring, smart home, and smart city applications and are extending into even more sectors. Recent advancements in the field have increased the necessity to study the many IoT anomaly detection applications. This paper begins with a summary of the detection methods and applications, accompanied by a discussion of the categorization of IoT anomaly detection algorithms. We then discuss the current publications to identify distinct application domains, examining papers chosen based on our search criteria. The survey considers 64 papers among recent publications published between January 2019 and July 2021. In recent publications, we observed a shortage of IoT anomaly detection methodologies, for example, when dealing with the integration of systems with various sensors, data and concept drifts, and data augmentation where there is a shortage of Ground Truth data. Finally, we discuss the present such challenges and offer new perspectives where further research is required.Comment: 22 page

    Single-board Device Individual Authentication based on Hardware Performance and Autoencoder Transformer Models

    Full text link
    The proliferation of the Internet of Things (IoT) has led to the emergence of crowdsensing applications, where a multitude of interconnected devices collaboratively collect and analyze data. Ensuring the authenticity and integrity of the data collected by these devices is crucial for reliable decision-making and maintaining trust in the system. Traditional authentication methods are often vulnerable to attacks or can be easily duplicated, posing challenges to securing crowdsensing applications. Besides, current solutions leveraging device behavior are mostly focused on device identification, which is a simpler task than authentication. To address these issues, an individual IoT device authentication framework based on hardware behavior fingerprinting and Transformer autoencoders is proposed in this work. This solution leverages the inherent imperfections and variations in IoT device hardware to differentiate between devices with identical specifications. By monitoring and analyzing the behavior of key hardware components, such as the CPU, GPU, RAM, and Storage on devices, unique fingerprints for each device are created. The performance samples are considered as time series data and used to train outlier detection transformer models, one per device and aiming to model its normal data distribution. Then, the framework is validated within a spectrum crowdsensing system leveraging Raspberry Pi devices. After a pool of experiments, the model from each device is able to individually authenticate it between the 45 devices employed for validation. An average True Positive Rate (TPR) of 0.74+-0.13 and an average maximum False Positive Rate (FPR) of 0.06+-0.09 demonstrate the effectiveness of this approach in enhancing authentication, security, and trust in crowdsensing applications

    Performance measurement with high performance computer of HW-GA anomaly detection algorithms for streaming data

    Get PDF
    Anomaly detection is very important in every sector as health, education, business, etc. Knowing what is going wrong with data/digital system help peoples from every sector to take decision. Detection anomalies in real time Big Data is nowadays very crucial. Dealing with real time data requires speed, for this reason the aim of this paper is to measure the performance of our previously proposed HW-GA algorithm compared with other anomaly detection algorithms. Many factors will be analyzed which may affect the performance of HW-GA as visualization of result, amount of data and performance of computers. Algorithm execution time and CPU usage are the parameters which will be measured to evaluate the performance of HW-GA algorithm. Also, another aim of this paper is to test the HW-GA algorithm with large amount of data to verify if it will find the possible anomalies and the result to compare with other algorithms. The experiments will be done in R with different datasets as real data Covid-19 and e-dnevnik data and three benchmarks from Numenta datasets. The real data have not known anomalies but in the benchmark data the anomalies are known this is in order to evaluate how the algorithms work in both situations. The novelty of this paper is that the performance will be tested in three different computers which one of them is high performance computer

    SUTMS - Unified Threat Management Framework for Home Networks

    Get PDF
    Home networks were initially designed for web browsing and non-business critical applications. As infrastructure improved, internet broadband costs decreased, and home internet usage transferred to e-commerce and business-critical applications. Today’s home computers host personnel identifiable information and financial data and act as a bridge to corporate networks via remote access technologies like VPN. The expansion of remote work and the transition to cloud computing have broadened the attack surface for potential threats. Home networks have become the extension of critical networks and services, hackers can get access to corporate data by compromising devices attacked to broad- band routers. All these challenges depict the importance of home-based Unified Threat Management (UTM) systems. There is a need of unified threat management framework that is developed specifically for home and small networks to address emerging security challenges. In this research, the proposed Smart Unified Threat Management (SUTMS) framework serves as a comprehensive solution for implementing home network security, incorporating firewall, anti-bot, intrusion detection, and anomaly detection engines into a unified system. SUTMS is able to provide 99.99% accuracy with 56.83% memory improvements. IPS stands out as the most resource-intensive UTM service, SUTMS successfully reduces the performance overhead of IDS by integrating it with the flow detection mod- ule. The artifact employs flow analysis to identify network anomalies and categorizes encrypted traffic according to its abnormalities. SUTMS can be scaled by introducing optional functions, i.e., routing and smart logging (utilizing Apriori algorithms). The research also tackles one of the limitations identified by SUTMS through the introduction of a second artifact called Secure Centralized Management System (SCMS). SCMS is a lightweight asset management platform with built-in security intelligence that can seamlessly integrate with a cloud for real-time updates
    • …
    corecore