72 research outputs found

    Engineering Multi-Agent Systems: State of Affairs and the Road Ahead

    Get PDF
    The continuous integration of software-intensive systems together with the ever-increasing computing power offer a breeding ground for intelligent agents and multi-agent systems (MAS) more than ever before. Over the past two decades, a wide variety of languages, models, techniques and methodologies have been proposed to engineer agents and MAS. Despite this substantial body of knowledge and expertise, the systematic engineering of large-scale and open MAS still poses many challenges. Researchers and engineers still face fundamental questions regarding theories, architectures, languages, processes, and platforms for designing, implementing, running, maintaining, and evolving MAS. This paper reports on the results of the 6th International Workshop on Engineering Multi-Agent Systems (EMAS 2018, 14th-15th of July, 2018, Stockholm, Sweden), where participants discussed the issues above focusing on the state of affairs and the road ahead for researchers and engineers in this area

    Hub-and-spoke Interoperability: an out of the skies approach for large-scale data interoperability

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia ElectrotĂ©cnica e de ComputadoresData Interoperability is a key challenge in large-scale heterogeneous environments. In here, interoperability via standards is not feasible or even possible; then, the classic approach, Point-to-Point (P2P) Interoperability, presents here two key problems: the trouble of non-modifiable systems that inhibit full possible interoperability and the excessive quantity of interoperability resources needed for establishing interoperability. A new approach is required for sustaining interoperability in those environments! Laterally thinking, commercial air transportation environments exhibit similar properties and problems to Data Interoperability environments and therefore face comparable difficulties. Outstanding approaches such as scissor-hub operations and the hub-andspoke paradigm have managed to address those challenges in commercial air transportation environments. Which, looking from data interoperability perspective, raises the idea of Mediated Interoperability and Interoperability Compositions. From there, a novel approach for data interoperability is proposed, the Hub-and-Spoke(H&S) Interoperability, as the hypothesis for addressing data interoperability in largescale environments. The H&S Interoperability approach fully solves the interoperability coverage problem and significantly reduces the number of resources needed for realising interoperability, thus outperforming P2P Interoperability. At the end, it is provided a technological realisation of the H&S approach, as the Plug’n’Interoperate solution, built upon plug-and-play principles applied to data interoperability

    A manifesto for future generation cloud computing: research directions for the next decade

    Get PDF
    The Cloud computing paradigm has revolutionised the computer science horizon during the past decade and has enabled the emergence of computing as the fifth utility. It has captured significant attention of academia, industries, and government bodies. Now, it has emerged as the backbone of modern economy by offering subscription-based services anytime, anywhere following a pay-as-you-go model. This has instigated (1) shorter establishment times for start-ups, (2) creation of scalable global enterprise applications, (3) better cost-to-value associativity for scientific and high performance computing applications, and (4) different invocation/execution models for pervasive and ubiquitous applications. The recent technological developments and paradigms such as serverless computing, software-defined networking, Internet of Things, and processing at network edge are creating new opportunities for Cloud computing. However, they are also posing several new challenges and creating the need for new approaches and research strategies, as well as the re-evaluation of the models that were developed to address issues such as scalability, elasticity, reliability, security, sustainability, and application models. The proposed manifesto addresses them by identifying the major open challenges in Cloud computing, emerging trends, and impact areas. It then offers research directions for the next decade, thus helping in the realisation of Future Generation Cloud Computing

    Engineering Automation for Reliable Software Interim Progress Report (10/01/2000 - 09/30/2001)

    Get PDF
    Prepared for: U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211The objective of our effort is to develop a scientific basis for producing reliable software that is also flexible and cost effective for the DoD distributed software domain. This objective addresses the long term goals of increasing the quality of service provided by complex systems while reducing development risks, costs, and time. Our work focuses on "wrap and glue" technology based on a domain specific distributed prototype model. The key to making the proposed approach reliable, flexible, and cost-effective is the automatic generation of glue and wrappers based on a designer's specification. The "wrap and glue" approach allows system designers to concentrate on the difficult interoperability problems and defines solutions in terms of deeper and more difficult interoperability issues, while freeing designers from implementation details. Specific research areas for the proposed effort include technology enabling rapid prototyping, inference for design checking, automatic program generation, distributed real-time scheduling, wrapper and glue technology, and reliability assessment and improvement. The proposed technology will be integrated with past research results to enable a quantum leap forward in the state of the art for rapid prototyping.U. S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-22110473-MA-SPApproved for public release; distribution is unlimited

    Service-oriented architecture for device lifecycle support in industrial automation

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia ElectrotĂ©cnica e de Computadores Especialidade: RobĂłtica e Manufactura IntegradaThis thesis addresses the device lifecycle support thematic in the scope of service oriented industrial automation domain. This domain is known for its plethora of heterogeneous equipment encompassing distinct functions, form factors, network interfaces, or I/O specifications supported by dissimilar software and hardware platforms. There is then an evident and crescent need to take every device into account and improve the agility performance during setup, control, management, monitoring and diagnosis phases. Service-oriented Architecture (SOA) paradigm is currently a widely endorsed approach for both business and enterprise systems integration. SOA concepts and technology are continuously spreading along the layers of the enterprise organization envisioning a unified interoperability solution. SOA promotes discoverability, loose coupling, abstraction, autonomy and composition of services relying on open web standards – features that can provide an important contribution to the industrial automation domain. The present work seized industrial automation device level requirements, constraints and needs to determine how and where can SOA be employed to solve some of the existent difficulties. Supported by these outcomes, a reference architecture shaped by distributed, adaptive and composable modules is proposed. This architecture will assist and ease the role of systems integrators during reengineering-related interventions throughout system lifecycle. In a converging direction, the present work also proposes a serviceoriented device model to support previous architecture vision and goals by including embedded added-value in terms of service-oriented peer-to-peer discovery and identification, configuration, management, as well as agile customization of device resources. In this context, the implementation and validation work proved not simply the feasibility and fitness of the proposed solution to two distinct test-benches but also its relevance to the expanding domain of SOA applications to support device lifecycle in the industrial automation domain

    System engineering and evolution decision support, Final Progress Report (05/01/1998 - 09-30-2001)

    Get PDF
    The objective of our effort is to develop a scientific basis for system engineering automation and decision support. This objective addresses the long term goals of increasing the quality of service provided complex systems while reducing development risks, costs, and time. Our work focused on decision support for designing operations of complex modular systems that can include embedded software. Emphasis areas included engineering automation capabilities in the areas of design modifications, design records, reuse, and automatic generation of design representations such as real-time schedules and software.U.S. Army Research OfficeFunding number(s): DSAM 90387, DWAM 80013, DWAM 90215

    Nature-inspired survivability: Prey-inspired survivability countermeasures for cloud computing security challenges

    Get PDF
    As cloud computing environments become complex, adversaries have become highly sophisticated and unpredictable. Moreover, they can easily increase attack power and persist longer before detection. Uncertain malicious actions, latent risks, Unobserved or Unobservable risks (UUURs) characterise this new threat domain. This thesis proposes prey-inspired survivability to address unpredictable security challenges borne out of UUURs. While survivability is a well-addressed phenomenon in non-extinct prey animals, applying prey survivability to cloud computing directly is challenging due to contradicting end goals. How to manage evolving survivability goals and requirements under contradicting environmental conditions adds to the challenges. To address these challenges, this thesis proposes a holistic taxonomy which integrate multiple and disparate perspectives of cloud security challenges. In addition, it proposes the TRIZ (Teorija Rezbenija Izobretatelskib Zadach) to derive prey-inspired solutions through resolving contradiction. First, it develops a 3-step process to facilitate interdomain transfer of concepts from nature to cloud. Moreover, TRIZ’s generic approach suggests specific solutions for cloud computing survivability. Then, the thesis presents the conceptual prey-inspired cloud computing survivability framework (Pi-CCSF), built upon TRIZ derived solutions. The framework run-time is pushed to the user-space to support evolving survivability design goals. Furthermore, a target-based decision-making technique (TBDM) is proposed to manage survivability decisions. To evaluate the prey-inspired survivability concept, Pi-CCSF simulator is developed and implemented. Evaluation results shows that escalating survivability actions improve the vitality of vulnerable and compromised virtual machines (VMs) by 5% and dramatically improve their overall survivability. Hypothesis testing conclusively supports the hypothesis that the escalation mechanisms can be applied to enhance the survivability of cloud computing systems. Numeric analysis of TBDM shows that by considering survivability preferences and attitudes (these directly impacts survivability actions), the TBDM method brings unpredictable survivability information closer to decision processes. This enables efficient execution of variable escalating survivability actions, which enables the Pi-CCSF’s decision system (DS) to focus upon decisions that achieve survivability outcomes under unpredictability imposed by UUUR

    The Internet of Things: A Review of Enabled Technologies and Future Challenges

    Get PDF
    The Internet of Things (IoT) is an emerging classical model, envisioned as a system of billions of small interconnected devices for posing the state-of-the-art findings to real-world glitches. Over the last decade, there has been an increasing research concentration in the IoT as an essential design of the constant convergence between human behaviors and their images on Information Technology. With the development of technologies, the IoT drives the deployment of across-the-board and self-organizing wireless networks. The IoT model is progressing toward the notion of a cyber-physical world, where things can be originated, driven, intermixed, and modernized to facilitate the emergence of any feasible association. This paper provides a summary of the existing IoT research that underlines enabling technologies, such as fog computing, wireless sensor networks, data mining, context awareness, real-time analytics, virtual reality, and cellular communications. Also, we present the lessons learned after acquiring a thorough representation of the subject. Thus, by identifying numerous open research challenges, it is presumed to drag more consideration into this novel paradigm. 2013 IEEE.This work was supported by Institute for Information and communications Technology Promotion (IITP) grant funded by the Korea government(MSIT) (No. 2018-0-01411, A Micro-Service IoTWare Framework Technology Development for Ultra small IoT Device).Scopus2-s2.0-8505888625
    • 

    corecore