408 research outputs found

    A self-adaptive discrete PSO algorithm with Heterogeneous parameter

    Get PDF
    This paper presents a discrete particle swarm optimization (DPSO) algorithm with heterogeneous (non-uniform) parameter values for solving the dynamic traveling salesman problem (DTSP). The DTSP can be modeled as a sequence of static sub-problems, each of which is an instance of the TSP. In the proposed DPSO algorithm, the information gathered while solving a sub-problem is retained in the form of a pheromone matrix and used by the algorithm while solving the next sub-problem. We present a method for automatically setting the values of the key DPSO parameters (except for the parameters directly related to the computation time and size of a problem).We show that the diversity of parameters values has a positive effect on the quality of the generated results. Furthermore, the population in the proposed algorithm has a higher level of entropy. We compare the performance of the proposed heterogeneous DPSO with two ant colony optimization (ACO) algorithms. The proposed algorithm outperforms the base DPSO and is competitive with the ACO

    Heterogeneous Ant Colony Optimisation Methods and their Application to the Travelling Salesman and PCB Drilling Problems

    Get PDF
    Ant Colony Optimization (ACO) is an optimization algorithm that is inspired by the foraging behaviour of real ants in locating and transporting food source to their nest. It is designed as a population-based metaheuristic and have been successfully implemented on various NP-hard problems such as the well-known Traveling Salesman Problem (TSP), Vehicle Routing Problem (VRP) and many more. However, majority of the studies in ACO focused on homogeneous artificial ants although animal behaviour researchers suggest that real ants exhibit heterogeneous behaviour thus improving the overall efficiency of the ant colonies. Equally important is that most, if not all, optimization algorithms require proper parameter tuning to achieve optimal performance. However, it is well-known that parameters are problem-dependant as different problems or even different instances have different optimal parameter settings. Parameter tuning through the testing of parameter combinations is a computationally expensive procedure that is infeasible on large-scale real-world problems. One method to mitigate this is to introduce heterogeneity by initializing the artificial agents with individual parameters rather than colony level parameters. This allows the algorithm to either actively or passively discover good parameter settings during the search. The approach undertaken in this study is to randomly initialize the ants from both uniform and Gaussian distribution respectively within a predefined range of values. The approach taken in this study is one of biological plausibility for ants with similar roles, but differing behavioural traits, which are being drawn from a mathematical distribution. This study also introduces an adaptive approach to the heterogeneous ant colony population that evolves the alpha and beta controlling parameters for ACO to locate near-optimal solutions. The adaptive approach is able to modify the exploitation and exploration characteristics of the algorithm during the search to reflect the dynamic nature of search. An empirical analysis of the proposed algorithm tested on a range of Travelling Salesman Problem (TSP) instances shows that the approach has better algorithmic performance when compared against state-of-the-art algorithms from the literature

    Niching particle swarm optimization based euclidean distance and hierarchical clustering for multimodal optimization

    Get PDF
    Abstract : Multimodal optimization is still one of the most challenging tasks in the evolutionary computation field, when multiple global and local optima need to be effectively and efficiently located. In this paper, a niching Particle Swarm Optimization (PSO) based Euclidean Distance and Hierarchical Clustering (EDHC) for multimodal optimization is proposed. This technique first uses the Euclidean distance based PSO algorithm to perform preliminarily search. In this phase, the particles are rapidly clustered around peaks. Secondly, hierarchical clustering is applied to identify and concentrate the particles distributed around each peak to finely search as a whole. Finally, a small world network topology is adopted in each niche to improve the exploitation ability of the algorithm. At the end of this paper, the proposed EDHC-PSO algorithm is applied to the Traveling Salesman Problems (TSP) after being discretized. The experiments demonstrate that the proposed method outperforms existing niching techniques on benchmark problems, and is effective for TSP

    Traveling Salesman Problem

    Get PDF
    The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid 1930s who invited the research community to consider a problem from the everyday life from a mathematical point of view. A traveling salesman has to visit exactly once each one of a list of m cities and then return to the home city. He knows the cost of traveling from any city i to any other city j. Thus, which is the tour of least possible cost the salesman can take? In this book the problem of finding algorithmic technique leading to good/optimal solutions for TSP (or for some other strictly related problems) is considered. TSP is a very attractive problem for the research community because it arises as a natural subproblem in many applications concerning the every day life. Indeed, each application, in which an optimal ordering of a number of items has to be chosen in a way that the total cost of a solution is determined by adding up the costs arising from two successively items, can be modelled as a TSP instance. Thus, studying TSP can never be considered as an abstract research with no real importance

    Hybrid ant colony system algorithm for static and dynamic job scheduling in grid computing

    Get PDF
    Grid computing is a distributed system with heterogeneous infrastructures. Resource management system (RMS) is one of the most important components which has great influence on the grid computing performance. The main part of RMS is the scheduler algorithm which has the responsibility to map submitted tasks to available resources. The complexity of scheduling problem is considered as a nondeterministic polynomial complete (NP-complete) problem and therefore, an intelligent algorithm is required to achieve better scheduling solution. One of the prominent intelligent algorithms is ant colony system (ACS) which is implemented widely to solve various types of scheduling problems. However, ACS suffers from stagnation problem in medium and large size grid computing system. ACS is based on exploitation and exploration mechanisms where the exploitation is sufficient but the exploration has a deficiency. The exploration in ACS is based on a random approach without any strategy. This study proposed four hybrid algorithms between ACS, Genetic Algorithm (GA), and Tabu Search (TS) algorithms to enhance the ACS performance. The algorithms are ACS(GA), ACS+GA, ACS(TS), and ACS+TS. These proposed hybrid algorithms will enhance ACS in terms of exploration mechanism and solution refinement by implementing low and high levels hybridization of ACS, GA, and TS algorithms. The proposed algorithms were evaluated against twelve metaheuristic algorithms in static (expected time to compute model) and dynamic (distribution pattern) grid computing environments. A simulator called ExSim was developed to mimic the static and dynamic nature of the grid computing. Experimental results show that the proposed algorithms outperform ACS in terms of best makespan values. Performance of ACS(GA), ACS+GA, ACS(TS), and ACS+TS are better than ACS by 0.35%, 2.03%, 4.65% and 6.99% respectively for static environment. For dynamic environment, performance of ACS(GA), ACS+GA, ACS+TS, and ACS(TS) are better than ACS by 0.01%, 0.56%, 1.16%, and 1.26% respectively. The proposed algorithms can be used to schedule tasks in grid computing with better performance in terms of makespan

    The AddACO: A bio-inspired modified version of the ant colony optimization algorithm to solve travel salesman problems

    Get PDF
    The Travel Salesman Problem (TSP) consists in finding the minimal-length closed tour that connects the entire group of nodes of a given graph. We propose to solve such a combinatorial optimization problem with the AddACO algorithm: it is a version of the Ant Colony Optimization method that is characterized by a modified probabilistic law at the basis of the exploratory movement of the artificial insects. In particular, the ant decisional rule is here set to amount in a linear convex combination of competing behavioral stimuli and has therefore an additive form (hence the name of our algorithm), rather than the canonical multiplicative one. The AddACO intends to address two conceptual shortcomings that characterize classical ACO methods: (i) the population of artificial insects is in principle allowed to simultaneously minimize/maximize all migratory guidance cues (which is in implausible from a biological/ecological point of view) and (ii) a given edge of the graph has a null probability to be explored if at least one of the movement trait is therein equal to zero, i.e., regardless the intensity of the others (this in principle reduces the exploratory potential of the ant colony). Three possible variants of our method are then specified: the AddACO-V1, which includes pheromone trail and visibility as insect decisional variables, and the AddACO-V2 and the AddACO-V3, which in turn add random effects and inertia, respectively, to the two classical migratory stimuli. The three versions of our algorithm are tested on benchmark middle-scale TPS instances, in order to assess their performance and to find their optimal parameter setting. The best performing variant is finally applied to large-scale TSPs, compared to the naive Ant-Cycle Ant System, proposed by Dorigo and colleagues, and evaluated in terms of quality of the solutions, computational time, and convergence speed. The aim is in fact to show that the proposed transition probability, as long as its conceptual advantages, is competitive from a performance perspective, i.e., if it does not reduce the exploratory capacity of the ant population w.r.t. the canonical one (at least in the case of selected TSPs). A theoretical study of the asymptotic behavior of the AddACO is given in the appendix of the work, whose conclusive section contains some hints for further improvements of our algorithm, also in the perspective of its application to other optimization problems

    Adjustability of a discrete particle swarm optimization for the dynamic TSP

    Get PDF
    This paper presents a detailed study of the discrete particle swarm optimization algorithm (DPSO) applied to solve the dynamic traveling salesman problem which has many practical applications in planning, logistics and chip manufacturing. The dynamic version is especially important in practical applications in which new circumstances, e.g., a traffic jam or a machine failure, could force changes to the problem specification. The DPSO algorithm was enriched with a pheromone memory which is used to guide the search process similarly to the ant colony optimization algorithm. The paper extends our previous work on the DPSO algorithm in various ways. Firstly, the performance of the algorithm is thoroughly tested on a set of newly generated DTSP instances which differ in the number and the size of the changes. Secondly, the impact of the pheromone memory on the convergence of the DPSO is investigated and compared with the version without a pheromone memory. Moreover, the results are compared with two ant colony optimization algorithms, namely the (Formula presented.)–(Formula presented.) ant system (MMAS) and the population-based ant colony optimization (PACO). The results show that the DPSO is able to find high-quality solutions to the DTSP and its performance is competitive with the performance of the MMAS and the PACO algorithms. Moreover, the pheromone memory has a positive impact on the convergence of the algorithm, especially in the face of dynamic changes to the problem’s definition

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms
    corecore