71 research outputs found

    The energy problem in resource constrained wireless networks

    Get PDF
    Today Wireless Sensor Networks are part of a wider scenario involving several wireless and wired communication technology: the Internet Of Things (IoT). The IoT envisions billions of tiny embedded devices, called Smart Objects, connected in a Internet-like structure. Even if the integration of WSNs into the IoT scenario is nowadays a reality, the main bottleneck of this technology is the energy consumption of sensor nodes, which quickly deplete the limited amount of energy of available in batteries. This drawback, referred to as the energy problem, was addressed in a number of research papers proposing various energy optimization approaches to extend sensor nodes lifetime. However, energy problem is still an open issue that prevents the full exploitation of WSN technology. This thesis investigates the energy problem in WSNs and introduces original solutions trying to mitigate drawbacks related to this phenomenon. Starting from solutions proposed by the research community in WSNs, we deeply investigate critical and challenging factors concerning the energy problem and we came out with cutting-edge low-power hardware platforms, original software energy-aware protocols and novel energy-neutral hardware/software solutions overcoming the state-of-art. Concerning low-power hardware, we introduce the MagoNode, a new WSN mote equipped with a radio frequency (RF) front-end which enhances radio performance. We show that in real applicative contexts, the advantages introduced by the RF front-end keep packet re-trasmissions and forwards low. Furthermore, we present the ultra low-power Wake-Up Radio (WUR) system we designed and the experimental activity to validate its performance. In particular, our Wake-up Radio Receiver (WRx) features a sensitivity of -50 dBm, has a current consumption of 579nA in idle-listening and features a maximum radio range of about 19 meters. What clearly resulted from the experimental activity is that performance of the WRx is strongly affected by noise. To mitigate the impact of noise on WUR communication we implemented a Forward Error Correction (FEC) mechanism based on Hamming code. We performed several test to determine the effectiveness of the proposed solution. The outcome show that our WUR system can be employed in environment where the Bit Error Rate (BER) induced by noise is up to 10^2, vice versa, when the BER induced by noise is in the order of 10´3 or below, it is not worth to use any Forward Error Correction (FEC) mechanism since it does not introduce any advantages compared to uncoded data. In the context of energy-aware solutions, we present two protocols: REACTIVE and ALBA-WUR. REACTIVE is a low-power over-the-air programming (OAP) protocol we implemented to improve the energy efficiency and lower the image dissemination time of Deluge T2, a well-known OAP protocol implemented in TinyOS. To prove the effectiveness of REACTIVE we compared it to Deluge exploiting a testbed made of MagoNode motes. Results of our experiments show that the image dissemination time is 7 times smaller than Deluge, while the energy consumption drops 2.6 times. ALBA-WUR redesigns ALBA-R protocol, extending it to exploit advantages of WUR technology. We compared ALBA-R and ALBA-WUR in terms of current consumption and latency via simulations. Results show that ALBA-WUR estimated network lifetime is decades longer than that achievable by ALBA-R. Furthermore, end-to-end packet latency features by ALBA-WUR is comparable to that of ALBA-R. While the main goal of energy optimization approaches is motes lifetime maximization, in recent years a new research branch in WSN emerged: Energy Neutrality. In contrast to lifetime maximization approach, energy neutrality foresees the perennial operation of the network. This can be achieve only making motes use the harvested energy at an appropriate rate that guarantees an everlasting lifetime. In this thesis we stress that maximizing energy efficiency of a hardware platform dedicated to WSNs is the key to reach energy neutral operation (ENO), still providing reasonable data rates and delays. To support this conjecture, we designed a new hardware platform equipped with our wake-up radio (WUR) system able to support ENO, the MagoNode++. The MagoNode++ features a energy harvester to gather energy from solar and thermoelectric sources, a ultra low power battery and power management module and our WUR system to improve the energy efficiency of wireless communications. To prove the goodness in terms of current consumption of the MagoNode++ we ran a series of experiments aimed to assess its performance. Results show that the MagoNode++ consumes only 2.8 µA in Low Power Mode with its WRx module in listening mode. While carrying on our research work on solutions trying to mitigate the energy problem, we also faced a challenging application context where the employment of WSNs is considered efficient and effective: structural health monitoring (SHM). SHM deals with the early detection of damages to civil and industrial structures and is emerging as a fundamental tool to improve the safety of these critical infrastructures. In this thesis we present two real world WSNs deployment dedicated to SHM. The first concerned the monitoring of the Rome B1 Underground construction site. The goal was to monitor the structural health of a tunnel connecting two stops. The second deployment concerned the monitoring of the structural health of buildings in earthquake-stricken areas. From the experience gained during these real world deployments, we designed the Modular Monitoring System (MMS). The MMS is a new low-power platform dedicated to SHM based on the MagoNode. We validated the effectiveness of the MMS low-power design performing energy measurements during data acquisition from actual transducers

    Analysis of a Rumor Routing Protocol with Limited Packet Lifetimes

    Get PDF
    Wireless sensor networks require specialized protocols that conserve power and minimize network traffic. Therefore, it is vitally important to analyze how the parameters of a protocol affect these metrics. In doing so, a more efficient protocol can be developed. This research evaluates how the number of nodes in a network, time between generated agents, lifetime of agents, number of agent transmissions, time between generated queries, lifetime of queries, and node transmission time affect a modified rumor routing protocol for a large-scale, wireless sensor network. Furthermore, it analyzes how the probability distribution of certain protocol parameters affects the network performance. The time between generated queries had the greatest effect upon a network’s energy consumption, accounting for 73.64% of the total variation. An exponential query interarrival distribution with a rate of 0.4 queries/second/node used 25.78% less power than an exponential distribution with a rate of 0.6 queries/second/node. The node transmission time was liable for 73.99% of the total variation in proportion of query failures. Of three distributions, each with a mean of 0.5 seconds, the proportion of query failures using a Rayleigh transmission time distribution was 14.23% less than an exponential distribution and 18.46% less than a uniform distribution. Lastly, 54.85% of the total variation in the mean proportion of time a node is uninformed was a result of the time between generated agents. The mean proportion of time a node is uninformed using an exponential agent interarrival distribution with a rate of 0.005 was 6.59% higher than an exponential distribution with a rate of 0.01

    A survey of network lifetime maximization techniques in wireless sensor networks

    No full text
    Emerging technologies, such as the Internet of things, smart applications, smart grids and machine-to-machine networks stimulate the deployment of autonomous, selfconfiguring, large-scale wireless sensor networks (WSNs). Efficient energy utilization is crucially important in order to maintain a fully operational network for the longest period of time possible. Therefore, network lifetime (NL) maximization techniques have attracted a lot of research attention owing to their importance in terms of extending the flawless operation of battery-constrained WSNs. In this paper, we review the recent developments in WSNs, including their applications, design constraints and lifetime estimation models. Commencing with the portrayal of rich variety definitions of NL design objective used for WSNs, the family of NL maximization techniques is introduced and some design guidelines with examples are provided to show the potential improvements of the different design criteri

    Protocol Design and Performance Evaluation of Wake-up Radio enabled IoT Networks

    Get PDF
    publishedVersio

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    Proceedings of Junior Researcher Workshop on Real-Time Computing

    Get PDF
    It is our great pleasure to welcome you to Junior Researcher Workshop on Real-Time Computing 2007, which is held conjointly with the 15th conference on Real-Time and Network Systems (RTNS'07). The first successful edition was held conjointly with the French Summer School on Real-Time Systems 2005 (http://etr05.loria.fr). Its main purpose is to bring together junior researchers (Ph.D. students, postdoc, ...) working on real-time systems. This workshop is a good opportunity to present our works and share ideas with other junior researchers and not only, since we will present our work to the audience of the main conference. In response to the call for papers, 14 papers were submitted and the international Program Committee provided detailed comments to improve these work-in-progress papers. We hope that our remarks will help the authors to submit improved long versions of theirs papers to the next edition of RTNS. JRWRTC'07 would not be possible without the generous contribution of many volunteers and institutions which supported RTNS'07. First, we would like to express our sincere gratitude to our sponsors for their financial support : Conseil Général de Meuthe et Moselle, Conseil Régional de Lorraine, Communauté Urbaine du Grand Nancy, Université Henri Poincaré, Institut National Polytechnique de Lorraine and LORIA and INRIA Lorraine. We are thankful to Pascal Mary for authorizing us to use his nice picture of “place Stanislas” for the proceedings and web site (many others are available at www.laplusbelleplacedumonde.com). Finally, we are most grateful to the local organizing committee that helped to organize the conference
    corecore