44,605 research outputs found

    A Novel Euler's Elastica based Segmentation Approach for Noisy Images via using the Progressive Hedging Algorithm

    Get PDF
    Euler's Elastica based unsupervised segmentation models have strong capability of completing the missing boundaries for existing objects in a clean image, but they are not working well for noisy images. This paper aims to establish a Euler's Elastica based approach that properly deals with random noises to improve the segmentation performance for noisy images. We solve the corresponding optimization problem via using the progressive hedging algorithm (PHA) with a step length suggested by the alternating direction method of multipliers (ADMM). Technically, all the simplified convex versions of the subproblems derived from the major framework of PHA can be obtained by using the curvature weighted approach and the convex relaxation method. Then an alternating optimization strategy is applied with the merits of using some powerful accelerating techniques including the fast Fourier transform (FFT) and generalized soft threshold formulas. Extensive experiments have been conducted on both synthetic and real images, which validated some significant gains of the proposed segmentation models and demonstrated the advantages of the developed algorithm

    Variational Image Segmentation Model Coupled with Image Restoration Achievements

    Get PDF
    Image segmentation and image restoration are two important topics in image processing with great achievements. In this paper, we propose a new multiphase segmentation model by combining image restoration and image segmentation models. Utilizing image restoration aspects, the proposed segmentation model can effectively and robustly tackle high noisy images, blurry images, images with missing pixels, and vector-valued images. In particular, one of the most important segmentation models, the piecewise constant Mumford-Shah model, can be extended easily in this way to segment gray and vector-valued images corrupted for example by noise, blur or missing pixels after coupling a new data fidelity term which comes from image restoration topics. It can be solved efficiently using the alternating minimization algorithm, and we prove the convergence of this algorithm with three variables under mild condition. Experiments on many synthetic and real-world images demonstrate that our method gives better segmentation results in comparison to others state-of-the-art segmentation models especially for blurry images and images with missing pixels values.Comment: 23 page

    Using shape entropy as a feature to lesion boundary segmentation with level sets

    Get PDF
    Accurate lesion segmentation in retinal imagery is an area of vast research. Of the many segmentation methods available very few are insensitive to topological changes on noisy surfaces. This paper presents an extension to earlier work on a novel stopping mechanism for level sets. The elementary features scheme (ELS) in [5] is extended to include shape entropy as a feature used to ’look back in time’ and find the point at which the curve best fits the real object. We compare the proposed extension against the original algorithm for timing and accuracy using 50 randomly selected images of exudates with a database of clinician demarcated boundaries as ground truth. While this work is presented applied to medical imagery, it can be used for any application involving the segmentation of bright or dark blobs on noisy images

    Noise-robust method for image segmentation

    Get PDF
    Segmentation of noisy images is one of the most challenging problems in image analysis and any improvement of segmentation methods can highly influence the performance of many image processing applications. In automated image segmentation, the fuzzy c-means (FCM) clustering has been widely used because of its ability to model uncertainty within the data, applicability to multi-modal data and fairly robust behaviour. However, the standard FCM algorithm does not consider any information about the spatial linage context and is highly sensitive to noise and other imaging artefacts. Considering above mentioned problems, we developed a new FCM-based approach for the noise-robust fuzzy clustering and we present it in this paper. In this new iterative algorithm we incorporated both spatial and feature space information into the similarity measure and the membership function. We considered that spatial information depends on the relative location and features of the neighbouring pixels. The performance of the proposed algorithm is tested on synthetic image with different noise levels and real images. Experimental quantitative and qualitative segmentation results show that our method efficiently preserves the homogeneity of the regions and is more robust to noise than other FCM-based methods

    Automatic leukocyte nucleus segmentation by intuitionistic fuzzy divergence based thresholding

    Get PDF
    The paper proposes a robust approach to automatic segmentation of leukocyte‟s nucleus from microscopic blood smear images under normal as well as noisy environment by employing a new exponential intuitionistic fuzzy divergence based thresholding technique. The algorithm minimizes the divergence between the actual image and the ideally thresholded image to search for the final threshold. A new divergence formula based on exponential intuitionistic fuzzy entropy has been proposed. Further, to increase its noise handling capacity, a neighborhood-based membership function for the image pixels has been designed. The proposed scheme has been applied on 110 normal and 54 leukemia (chronic myelogenous leukemia) affected blood samples. The nucleus segmentation results have been validated by three expert haematologists. The algorithm achieves an average segmentation accuracy of 98.52% in noise-free environment. It beats the competitor algorithms in terms of several other metrics. The proposed scheme with neighborhood based membership function outperforms the competitor algorithms in terms of segmentation accuracy under noisy environment. It achieves 93.90% and 94.93% accuracies for Speckle and Gaussian noises respectively. The average area under the ROC curves comes out to be 0.9514 in noisy conditions, which proves the robustness of the proposed algorithm

    Improved Vector Median Filtering Algorithm for High Density Impulse Noise Removal in Microarray Images

    Get PDF
    The digital images are corrupted by impulse noise due to errors generated in camera sensors, analog-to-digital conversion and communication channels. Therefore it is necessary to remove impulse noise in-order to provide further processing such as edge detection, segmentation, pattern recognition etc. Filtering a noisy image, while preserving the image details is one of the most important issues in image processing. In this paper, we propose a new method for impulse noise removal in Microarray images. The proposed iterative algorithm search for the noise-free pixels within a small neighborhood. The noisy pixel is then replaced with the value estimated from the noise-free pixels. The process continues iteratively until all noisy-pixels of the noisy image are filtered. The performance of the proposed method is tested using impulse noise corrupted microarray images. The experimental results show the proposed algorithm can perform significantly better in terms of noise suppression and detail preservation in microarray images than a number of existing nonlinear techniques

    Noise-Tolerant Deep Learning for Histopathological Image Segmentation

    Get PDF
    Developing an effective algorithm based on the handcrafted features from histological images (histo-images) is difficult due to the complexity of histo-images. Deep network models have achieved promising performances, as it is capable of capturing high-level features. However, a major hurdle hindering the application of deep learning in histo-image segmentation is to obtain large ground-truth data for training. Taking the segmentations from simple off-the-shelf algorithms as training data will be a new way to address this hurdle. The output from the off-the-shelf segmentations is considered to be noisy data, which requires a new learning scheme for deep learning segmentation. Existing works on noisy label deep learning are largely for image classification. In this thesis, we study whether and how integrating imperfect or noisy “ground-truth” from off-the-shelf segmentation algorithms may help achieve better performance so that the deep learning can be applied to histo-image segmentation with the manageable effort. Two noise-tolerant deep learning architectures are proposed in this thesis. One is based on the Noisy at Random (NAR) Model, and the other is based on the Noisy Not at Random (NNAR) Model. The largest difference between the two is that NNAR based architecture assumes the label noise is dependent on features of the image. Unlike most existing works, we study how to integrate multiple types of noisy data into one specific model. The proposed method has extensive application when segmentations from multiple off-the-shelf algorithms are available. The implementation of the NNAR based architecture demonstrates its effectiveness and superiority over off-the-shelf and other existing deep-learningbased image segmentation algorithms

    Tuning iris recognition for noisy images

    Get PDF
    The use of iris recognition for human authentication has been spreading in the past years. Daugman has proposed a method for iris recognition, composed by four stages: segmentation, normalization, feature extraction, and matching. In this paper we propose some modifications and extensions to Daugman's method to cope with noisy images. These modifications are proposed after a study of images of CASIA and UBIRIS databases. The major modification is on the computationally demanding segmentation stage, for which we propose a faster and equally accurate template matching approach. The extensions on the algorithm address the important issue of pre-processing that depends on the image database, being mandatory when we have a non infra-red camera, like a typical WebCam. For this scenario, we propose methods for reflection removal and pupil enhancement and isolation. The tests, carried out by our C# application on grayscale CASIA and UBIRIS images show that the template matching segmentation method is more accurate and faster than the previous one, for noisy images. The proposed algorithms are found to be efficient and necessary when we deal with non infra-red images and non uniform illumination
    • …
    corecore