14 research outputs found

    Bitrate Ladder Prediction Methods for Adaptive Video Streaming: A Review and Benchmark

    Full text link
    HTTP adaptive streaming (HAS) has emerged as a widely adopted approach for over-the-top (OTT) video streaming services, due to its ability to deliver a seamless streaming experience. A key component of HAS is the bitrate ladder, which provides the encoding parameters (e.g., bitrate-resolution pairs) to encode the source video. The representations in the bitrate ladder allow the client's player to dynamically adjust the quality of the video stream based on network conditions by selecting the most appropriate representation from the bitrate ladder. The most straightforward and lowest complexity approach involves using a fixed bitrate ladder for all videos, consisting of pre-determined bitrate-resolution pairs known as one-size-fits-all. Conversely, the most reliable technique relies on intensively encoding all resolutions over a wide range of bitrates to build the convex hull, thereby optimizing the bitrate ladder for each specific video. Several techniques have been proposed to predict content-based ladders without performing a costly exhaustive search encoding. This paper provides a comprehensive review of various methods, including both conventional and learning-based approaches. Furthermore, we conduct a benchmark study focusing exclusively on various learning-based approaches for predicting content-optimized bitrate ladders across multiple codec settings. The considered methods are evaluated on our proposed large-scale dataset, which includes 300 UHD video shots encoded with software and hardware encoders using three state-of-the-art encoders, including AVC/H.264, HEVC/H.265, and VVC/H.266, at various bitrate points. Our analysis provides baseline methods and insights, which will be valuable for future research in the field of bitrate ladder prediction. The source code of the proposed benchmark and the dataset will be made publicly available upon acceptance of the paper

    Adaptive Streaming: From Bitrate Maximization to Rate-Distortion Optimization

    Get PDF
    The fundamental conflict between the increasing consumer demand for better Quality-of-Experience (QoE) and the limited supply of network resources has become significant challenges to modern video delivery systems. State-of-the-art adaptive bitrate (ABR) streaming algorithms are dedicated to drain available bandwidth in hope to improve viewers' QoE, resulting in inefficient use of network resources. In this thesis, we develop an alternative design paradigm, namely rate-distortion optimized streaming (RDOS), to balance the contrast demands from video consumers and service providers. Distinct from the traditional bitrate maximization paradigm, RDOS must operate at any given point along the rate-distortion curve, as specified by a trade-off parameter. The new paradigm has found plausible explanations in information theory, economics, and visual perception. To instantiate the new philosophy, we decompose adaptive streaming algorithms into three mutually independent components, including throughput predictor, reward function, and bitrate selector. We provide a unified framework to understand the connections among all existing ABR algorithms. The new perspective also illustrates the fundamental limitations of each algorithm by going behind its underlying assumptions. Based on the insights, we propose novel improvements to each of the three functional components. To alleviate a series of unrealistic assumptions behind bitrate-based QoE models, we develop a theoretically-grounded objective QoE model. The new objective QoE model combines the information from subject-rated streaming videos and the prior knowledge about human visual system (HVS) in a principled way. By analyzing a corpus of psychophysical experiments, we show the QoE function estimation can be formulated as a projection onto convex sets problem. The proposed model presents strong generalization capability over a broad range of source contents, video encoders, and viewing conditions. Most importantly, the QoE model disentangles bitrate with quality, making it an ideal component in the RDOS framework. In contrast to the existing throughput estimators that approximate the marginal probability distribution over all connections, we optimize the throughput predictor conditioned on each client. Although there are lack of training data for each Internet Protocol connection, we can leverage the latest advances in meta learning to incorporate the knowledge embedded in similar tasks. With a deliberately designed objective function, the algorithm learns to identify similar structures among different network characteristics from millions of realistic throughput traces. During the test phase, the model can quickly adapt to connection-level network characteristics with only a small amount of training data from novel streaming video clients with a small number of gradient steps. The enormous space of streaming videos, constantly progressing encoding schemes, and great diversity of throughput characteristics make it extremely challenging for modern data-driven bitrate selectors that are trained with limited samples to generalize well. To this end, we propose a Bayesian bitrate selection algorithm by adaptively fusing an online, robust, and short-term optimal controller with an offline, susceptible, and long-term optimal planner. Depending on the reliability of the two controllers in certain system states, the algorithm dynamically prioritizes the one of the two decision rules to obtain the optimal decision. To faithfully evaluate the performance of RDOS, we construct a large-scale streaming video dataset -- the Waterloo Streaming Video database. It contains a wide variety of high quality source contents, encoders, encoding profiles, realistic throughput traces, and viewing devices. Extensive objective evaluation demonstrates the proposed algorithm can deliver identical QoE to state-of-the-art ABR algorithms at a much lower cost. The improvement is also supported by so-far the largest subjective video quality assessment experiment

    Streaming and User Behaviour in Omnidirectional Videos

    Get PDF
    Omnidirectional videos (ODVs) have gone beyond the passive paradigm of traditional video, offering higher degrees of immersion and interaction. The revolutionary novelty of this technology is the possibility for users to interact with the surrounding environment, and to feel a sense of engagement and presence in a virtual space. Users are clearly the main driving force of immersive applications and consequentially the services need to be properly tailored to them. In this context, this chapter highlights the importance of the new role of users in ODV streaming applications, and thus the need for understanding their behaviour while navigating within ODVs. A comprehensive overview of the research efforts aimed at advancing ODV streaming systems is also presented. In particular, the state-of-the-art solutions under examination in this chapter are distinguished in terms of system-centric and user-centric streaming approaches: the former approach comes from a quite straightforward extension of well-established solutions for the 2D video pipeline while the latter one takes the benefit of understanding users’ behaviour and enable more personalised ODV streaming

    Generalized Rate-Distortion Functions of Videos

    Get PDF
    Customers are consuming enormous digital videos every day via various kinds of video services through terrestrial, cable, and satellite communication systems or over-the-top Internet connections. To offer the best possible services using the limited capacity of video distribution systems, these video services desire precise understanding of the relationship between the perceptual quality of a video and its media attributes, for which we term it the GRD function. In this thesis, we focus on accurately estimating the generalized rate-distortion (GRD) function with a minimal number of measurement queries. We first explore the GRD behavior of compressed digital videos in a two-dimensional space of bitrate and resolution. Our analysis on real-world GRD data reveals that all GRD functions share similar regularities, but meanwhile exhibit considerable variations across different combinations of content and encoder types. Based on the analysis, we define the theoretical space of the GRD function, which not only constructs the groundwork of the form a GRD model should take, but also determines the constraints these functions must satisfy. We propose two computational GRD models. In the first model, we assume that the quality scores are precise, and develop a robust axial-monotonic Clough-Tocher (RAMCT) interpolation method to approximate the GRD function from a moderate number of measurements. In the second model, we show that the GRD function space is a convex set residing in a Hilbert space, and that a GRD function can be estimated by solving a projection problem onto the convex set. By analyzing GRD functions that arise in practice, we approximate the infinite-dimensional theoretical space by a low-dimensional one, based on which an empirical GRD model of few parameters is proposed. To further reduce the number of queries, we present a novel sampling scheme based on a probabilistic model and an information measure. The proposed sampling method generates a sequence of queries by minimizing the overall informativeness of the remaining samples. To evaluate the performance of the GRD estimation methods, we collect a large-scale database consisting of more than 4,0004,000 real-world GRD functions, namely the Waterloo generalized rate-distortion (Waterloo GRD) database. Extensive comparison experiments are carried out on the database. Superiority of the two proposed GRD models over state-of-the-art approaches are attested both quantitatively and visually. Meanwhile, it is also validated that the proposed sampling algorithm consistently reduces the number of queries needed by various GRD estimation algorithms. Finally, we show the broad application scope of the proposed GRD models by exemplifying three applications: rate-distortion curve prediction, per-title encoding profile generation, and video encoder comparison
    corecore