34 research outputs found

    Biomedical Image Processing and Classification

    Get PDF
    Biomedical image processing is an interdisciplinary field involving a variety of disciplines, e.g., electronics, computer science, physics, mathematics, physiology, and medicine. Several imaging techniques have been developed, providing many approaches to the study of the human body. Biomedical image processing is finding an increasing number of important applications in, for example, the study of the internal structure or function of an organ and the diagnosis or treatment of a disease. If associated with classification methods, it can support the development of computer-aided diagnosis (CAD) systems, which could help medical doctors in refining their clinical picture

    Image Processing and Analysis for Preclinical and Clinical Applications

    Get PDF
    Radiomics is one of the most successful branches of research in the field of image processing and analysis, as it provides valuable quantitative information for the personalized medicine. It has the potential to discover features of the disease that cannot be appreciated with the naked eye in both preclinical and clinical studies. In general, all quantitative approaches based on biomedical images, such as positron emission tomography (PET), computed tomography (CT) and magnetic resonance imaging (MRI), have a positive clinical impact in the detection of biological processes and diseases as well as in predicting response to treatment. This Special Issue, “Image Processing and Analysis for Preclinical and Clinical Applications”, addresses some gaps in this field to improve the quality of research in the clinical and preclinical environment. It consists of fourteen peer-reviewed papers covering a range of topics and applications related to biomedical image processing and analysis

    Automatic detection of pathological regions in medical images

    Get PDF
    Medical images are an essential tool in the daily clinical routine for the detection, diagnosis, and monitoring of diseases. Different imaging modalities such as magnetic resonance (MR) or X-ray imaging are used to visualize the manifestations of various diseases, providing physicians with valuable information. However, analyzing every single image by human experts is a tedious and laborious task. Deep learning methods have shown great potential to support this process, but many images are needed to train reliable neural networks. Besides the accuracy of the final method, the interpretability of the results is crucial for a deep learning method to be established. A fundamental problem in the medical field is the availability of sufficiently large datasets due to the variability of different imaging techniques and their configurations. The aim of this thesis is the development of deep learning methods for the automatic identification of anomalous regions in medical images. Each method is tailored to the amount and type of available data. In the first step, we present a fully supervised segmentation method based on denoising diffusion models. This requires a large dataset with pixel-wise manual annotations of the pathological regions. Due to the implicit ensemble characteristic, our method provides uncertainty maps to allow interpretability of the model’s decisions. Manual pixel-wise annotations face the problems that they are prone to human bias, hard to obtain, and often even unavailable. Weakly supervised methods avoid these issues by only relying on image-level annotations. We present two different approaches based on generative models to generate pixel-wise anomaly maps using only image-level annotations, i.e., a generative adversarial network and a denoising diffusion model. Both perform image-to-image translation between a set of healthy and a set of diseased subjects. Pixel-wise anomaly maps can be obtained by computing the difference between the original image of the diseased subject and the synthetic image of its healthy representation. In an extension of the diffusion-based anomaly detection method, we present a flexible framework to solve various image-to-image translation tasks. With this method, we managed to change the size of tumors in MR images, and we were able to add realistic pathologies to images of healthy subjects. Finally, we focus on a problem frequently occurring when working with MR images: If not enough data from one MR scanner are available, data from other scanners need to be considered. This multi-scanner setting introduces a bias between the datasets of different scanners, limiting the performance of deep learning models. We present a regularization strategy on the model’s latent space to overcome the problems raised by this multi-site setting

    Data-Driven Deep Learning-Based Analysis on THz Imaging

    Get PDF
    Breast cancer affects about 12.5% of women population in the United States. Surgical operations are often needed post diagnosis. Breast conserving surgery can help remove malignant tumors while maximizing the remaining healthy tissues. Due to lacking effective real-time tumor analysis tools and a unified operation standard, re-excision rate could be higher than 30% among breast conserving surgery patients. This results in significant physical, physiological, and financial burdens to those patients. This work designs deep learning-based segmentation algorithms that detect tissue type in excised tissues using pulsed THz technology. This work evaluates the algorithms for tissue type classification task among freshly excised tumor samples. Freshly excised tumor samples are more challenging than formalin-fixed, paraffin-embedded (FFPE) block sample counterparts due to excessive fluid, image registration difficulties, and lacking trustworthy pixelwise labels of each tissue sample. Additionally, evaluating freshly excised tumor samples has profound meaning of potentially applying pulsed THz scan technology to breast conserving cancer surgery in operating room. Recently, deep learning techniques have been heavily researched since GPU based computation power becomes economical and stronger. This dissertation revisits breast cancer tissue segmentation related problems using pulsed terahertz wave scan technique among murine samples and applies recent deep learning frameworks to enhance the performance in various tasks. This study first performs pixelwise classification on terahertz scans with CNN-based neural networks and time-frequency based feature tensors using wavelet transformation. This study then explores the neural network based semantic segmentation strategy performing on terahertz scans considering spatial information and incorporating noisy label handling with label correction techniques. Additionally, this study performs resolution restoration for visual enhancement on terahertz scans using an unsupervised, generative image-to-image translation methodology. This work also proposes a novel data processing pipeline that trains a semantic segmentation network using only neural generated synthetic terahertz scans. The performance is evaluated using various evaluation metrics among different tasks

    Automatic Segmentation of the Mandible for Three-Dimensional Virtual Surgical Planning

    Get PDF
    Three-dimensional (3D) medical imaging techniques have a fundamental role in the field of oral and maxillofacial surgery (OMFS). 3D images are used to guide diagnosis, assess the severity of disease, for pre-operative planning, per-operative guidance and virtual surgical planning (VSP). In the field of oral cancer, where surgical resection requiring the partial removal of the mandible is a common treatment, resection surgery is often based on 3D VSP to accurately design a resection plan around tumor margins. In orthognathic surgery and dental implant surgery, 3D VSP is also extensively used to precisely guide mandibular surgery. Image segmentation from the radiography images of the head and neck, which is a process to create a 3D volume of the target tissue, is a useful tool to visualize the mandible and quantify geometric parameters. Studies have shown that 3D VSP requires accurate segmentation of the mandible, which is currently performed by medical technicians. Mandible segmentation was usually done manually, which is a time-consuming and poorly reproducible process. This thesis presents four algorithms for mandible segmentation from CT and CBCT and contributes to some novel ideas for the development of automatic mandible segmentation for 3D VSP. We implement the segmentation approaches on head and neck CT/CBCT datasets and then evaluate the performance. Experimental results show that our proposed approaches for mandible segmentation in CT/CBCT datasets exhibit high accuracy

    Medical image synthesis using generative adversarial networks: towards photo-realistic image synthesis

    Full text link
    This proposed work addresses the photo-realism for synthetic images. We introduced a modified generative adversarial network: StencilGAN. It is a perceptually-aware generative adversarial network that synthesizes images based on overlaid labelled masks. This technique can be a prominent solution for the scarcity of the resources in the healthcare sector

    Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries

    Get PDF
    This two-volume set LNCS 12962 and 12963 constitutes the thoroughly refereed proceedings of the 7th International MICCAI Brainlesion Workshop, BrainLes 2021, as well as the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge, the Federated Tumor Segmentation (FeTS) Challenge, the Cross-Modality Domain Adaptation (CrossMoDA) Challenge, and the challenge on Quantification of Uncertainties in Biomedical Image Quantification (QUBIQ). These were held jointly at the 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020, in September 2021. The 91 revised papers presented in these volumes were selected form 151 submissions. Due to COVID-19 pandemic the conference was held virtually. This is an open access book

    Handbook of Vascular Biometrics

    Get PDF

    A Semi-Automated Approach to Medical Image Segmentation using Conditional Random Field Inference

    Full text link
    Medical image segmentation plays a crucial role in delivering effective patient care in various diagnostic and treatment modalities. Manual delineation of target volumes and all critical structures is a very tedious and highly time-consuming process and introduce uncertainties of treatment outcomes of patients. Fully automatic methods holds great promise for reducing cost and time, while at the same time improving accuracy and eliminating expert variability, yet there are still great challenges. Legally and ethically, human oversight must be integrated with ”smart tools” favoring a semi-automatic technique which can leverage the best aspects of both human and computer. In this work we show that we can formulate a semi-automatic framework for the segmentation problem by formulating it as an energy minimization problem in Conditional Random Field (CRF). We show that human input can be used as adaptive training data to condition a probabilistic boundary term modeled for the heterogeneous boundary characteristics of anatomical structures. We demonstrated that our method can effortlessly adapt to multiple structures and image modalities using a single CRF framework and tools to learn probabilistic terms interactively. To tackle a more difficult multi-class segmentation problem, we developed a new ensemble one-vs-rest graph cut algorithm. Each graph in the ensemble performs a simple and efficient bi-class (a target class vs the rest of the classes) segmentation. The final segmentation is obtained by majority vote. Our algorithm is both faster and more accurate when compared with the prior multi-class method which iteratively swaps classes. In this Thesis, we also include novel volumetric segmentation algorithms which employ deep learning and indicate how to synthesize our CRF framework with convolutional neural networks (CNN). This would allow incorporating user guidance into CNN based deep learning for this task. We think a deep learning based method interactively guided by human expert is the ideal solution for medical image segmentation

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers
    corecore