104 research outputs found

    A privacy-preserving method for temporarily linking/revoking pseudonym certificates in vehicular networks

    Get PDF
    Vehicular communication (V2X) technologies are expected to become increasingly common in the future. Although they enable improvements on transportation safety and efficiency, the large scale deployment of V2X requires addressing some challenges. In particular, to prevent abuse by drivers and by the system itself, V2X architectures must: (1) ensure the authenticity of messages, which is usually accomplished by means of digital certification; and (2) preserve the privacy of honest users, so owners of non-revoked certificates cannot be easily identified and tracked by eavesdroppers. A promising design to address these requirements is the Security Credential Management System (SCMS), which is currently among the main candidates for protecting V2X communications in the United States. Even though SCMS provides efficient, scalable and privacy-preserving mechanisms for managing V2X-oriented certificates, in this article we show that its certificate revocation process can be further enhanced. Namely, we present two birthday attacks against SCMS\u27s revocation process, both of which degrade the system\u27s security as time passes and more certificates are revoked. We then describe an alternative design to prevent such security degradation with minimal computational overhead. In complement to these security gains, we also describe a mechanism for improving the flexibility of the revocation procedure, allowing certificates (as well as their owner\u27s privacy) to be temporarily revoked in an efficient manner. This should be useful, for example, to implement suspension mechanisms or to aid in investigations by law-enforcement authorities

    Security management for backhaul-aware 5G-V2X

    Full text link
    Security is a primary concern for the networks aiming at the utilization of Cellular (C) services for connecting Vehicles to Everything (V2X). At present, C-V2X is observing a paradigm shift from Long Term Evolution (LTE) - Evolved Universal Terrestrial Radio Access Network (E-UTRAN) to Fifth Generation (5G) based functional architecture. However, security and credential management are still concerns to be resolved under 5G-V2X. A sizably voluminous number of key updates and non-availability of sub-functions at the edge cause adscititious overheads and decrement the performance while alarming the possibilities of variants of cyber attacks. In this paper, security management is studied as a principle of sustainability and its tradeoff is evaluated with the number of key-updates required to maintain an authenticated connection of a vehicle to the 5G-terminals keeping intact the security functions at the backhaul. A numerical study is presented to determine the claims and understand the proposed tradeoff.Comment: 4 pages, 3 figures, 1 table, Conference on Information Security and Cryptography-Winter (CISC-W), December 8, 2018, Seoul, South Kore

    Vehicular Wireless Communication Standards: Challenges and Comparison

    Get PDF
    Autonomous vehicles (AVs) are the future of mobility. Safe and reliable AVs are required for widespread adoption by a community which is only possible if these AVs can communicate with each other & with other entities in a highly efficient way. AVs require ultra-reliable communications for safety-critical applications to ensure safe driving. Existing vehicular communication standards, i.e., IEEE 802.11p (DSRC), ITS-G5, & LTE, etc., do not meet the requirements of high throughput, ultra-high reliability, and ultra-low latency along with other issues. To address these challenges, IEEE 802.11bd & 5G NR-V2X standards provide more efficient and reliable communication, however, these standards are in the developing stage. Existing literature generally discusses the features of these standards only and does not discuss the drawbacks. Similarly, existing literature does not discuss the comparison between these standards or discusses a comparison between any two standards only. However, this work comprehensively describes different issues/challenges faced by these standards. This work also comprehensively provides a comparison among these standards along with their salient features. The work also describes spectrum management issues comprehensively, i.e., interoperability issues, co-existence with Wi-Fi, etc. The work also describes different other issues comprehensively along with recommendations. The work describes that 802.11bd and 5G NR are the two potential future standards for efficient vehicle communications; however, these standards must be able to provide backward compatibility, interoperability, and co-existence with current and previous standards
    • …
    corecore