572 research outputs found

    The Potential Short- and Long-Term Disruptions and Transformative Impacts of 5G and Beyond Wireless Networks: Lessons Learnt from the Development of a 5G Testbed Environment

    Get PDF
    The capacity and coverage requirements for 5 th generation (5G) and beyond wireless connectivity will be significantly different from the predecessor networks. To meet these requirements, the anticipated deployment cost in the United Kingdom (UK) is predicted to be between £30bn and £50bn, whereas the current annual capital expenditure (CapEX) of the mobile network operators (MNOs) is £2.5bn. This prospect has vastly impacted and has become one of the major delaying factors for building the 5G physical infrastructure, whereas other areas of 5G are progressing at their speed. Due to the expensive and complicated nature of the network infrastructure and spectrum, the second-tier operators, widely known as mobile virtual network operators (MVNO), are entirely dependent on the MNOs. In this paper, an extensive study is conducted to explore the possibilities of reducing the 5G deployment cost and developing viable business models. In this regard, the potential of infrastructure, data, and spectrum sharing is thoroughly investigated. It is established that the use of existing public infrastructure (e.g., streetlights, telephone poles, etc.) has a potential to reduce the anticipated cost by about 40% to 60%. This paper also reviews the recent Ofcom initiatives to release location-based licenses of the 5G-compatible radio spectrum. Our study suggests that simplification of infrastructure and spectrum will encourage the exponential growth of scenario-specific cellular networks (e.g., private networks, community networks, micro-operators) and will potentially disrupt the current business models of telecommunication business stakeholders - specifically MNOs and TowerCos. Furthermore, the anticipated dense device connectivity in 5G will increase the resolution of traditional and non-traditional data availability significantly. This will encourage extensive data harvesting as a business opportunity and function within small and medium-sized enterprises (SMEs) as well as large social networks. Consequently, the rise of new infrastructures and spectrum stakeholders is anticipated. This will fuel the development of a 5G data exchange ecosystem where data transactions are deemed to be high-value business commodities. The privacy and security of such data, as well as definitions of the associated revenue models and ownership, are challenging areas - and these have yet to emerge and mature fully. In this direction, this paper proposes the development of a unified data hub with layered structured privacy and security along with blockchain and encrypted off-chain based ownership/royalty tracking. Also, a data economy-oriented business model is proposed. The study found that with the potential commodification of data and data transactions along with the low-cost physical infrastructure and spectrum, the 5G network will introduce significant disruption in the Telco business ecosystem

    Blockchain and 6G: The Future of Secure and Ubiquitous Communication

    Full text link
    The future communication will be characterized by ubiquitous connectivity and security. These features will be essential requirements for the efficient functioning of the futuristic applications. In this paper, in order to highlight the impact of blockchain and 6G on the future communication systems, we categorize these application requirements into two broad groups. In the first category, called Requirement Group I \mbox{(RG-I)}, we include the performance-related needs on data rates, latency, reliability and massive connectivity, while in the second category, called Requirement Group II \mbox{(RG-II)}, we include the security-related needs on data integrity, non-repudiability, and auditability. With blockchain and 6G, the network decentralization and resource sharing would minimize resource under-utilization thereby facilitating RG-I targets. Furthermore, through appropriate selection of blockchain type and consensus algorithms, RG-II needs of 6G applications can also be readily addressed. Through this study, the combination of blockchain and 6G emerges as an elegant solution for secure and ubiquitous future communication

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches

    Security Threats to 5G Networks for Social Robots in Public Spaces: A Survey

    Get PDF
    This paper surveys security threats to 5G-enabled wireless access networks for social robots in public spaces (SRPS). The use of social robots (SR) in public areas requires specific Quality of Service (QoS) planning to meet its unique requirements. Its 5G threat landscape entails more than cybersecurity threats that most previous studies focus on. This study examines the 5G wireless RAN for SRPS from three perspectives: SR and wireless access points, the ad hoc network link between SR and user devices, and threats to SR and users’ communication equipment. The paper analyses the security threats to confidentiality, integrity, availability, authentication, authorisation, and privacy from the SRPS security objectives perspective. We begin with an overview of SRPS use cases and access network requirements, followed by 5G security standards, requirements, and the need for a more representative threat landscape for SRPS. The findings confirm that the RAN of SRPS is most vulnerable to physical, side-channel, intrusion, injection, manipulation, and natural and malicious threats. The paper presents existing mitigation to the identified attacks and recommends including physical level security (PLS) and post-quantum cryptography in the early design of SRPS. The insights from this survey will provide valuable risk assessment and management input to researchers, industrial practitioners, policymakers, and other stakeholders of SRPS.publishedVersio

    Developments of 5G Technology

    Get PDF
    This technology is the future of current LTE technology which would be a boost to the future of wireless and computer networks, as the speeds would be way higher than the current LTE networks, which will push the technology to a new level. This technology will make the radio channels to support data access speeds up to 10 Gb/s which will turn the bandwidth radio channels as WiFi. Comparing it with other LTE technology\u27s it has high speed and capacity, support interactive multimedia, voice, internet and its data rate is 1 Gbps which makes it faster than other LTE’s . This is much more effective than other technology’s due to its advanced billing interfaces. This paper provides detail explanation of 5G technology, its architecture, challenges, advantages and disadvantages, issues and ends with future of 5G technology
    corecore