441 research outputs found

    A Secured Proxy-Based Data Sharing Module in IoT Environments Using Blockchain

    Get PDF
    Access and utilization of data are central to the cloud computing paradigm. With the advent of the Internet of Things (IoT), the tendency of data sharing on the cloud has seen enormous growth. With data sharing comes numerous security and privacy issues. In the process of ensuring data confidentiality and fine-grained access control to data in the cloud, several studies have proposed Attribute-Based Encryption (ABE) schemes, with Key Policy-ABE (KP-ABE) being the prominent one. Recent works have however suggested that the confidentiality of data is violated through collusion attacks between a revoked user and the cloud server. We present a secured and efficient Proxy Re-Encryption (PRE) scheme that incorporates an Inner-Product Encryption (IPE) scheme in which decryption of data is possible if the inner product of the private key, associated with a set of attributes specified by the data owner, and the associated ciphertext is equal to zero 0 . We utilize a blockchain network whose processing node acts as the proxy server and performs re-encryption on the data. In ensuring data confidentiality and preventing collusion attacks, the data are divided into two, with one part stored on the blockchain network and the other part stored on the cloud. Our approach also achieves fine-grained access control

    A survey of machine and deep learning methods for privacy protection in the Internet of things

    Get PDF
    Recent advances in hardware and information technology have accelerated the proliferation of smart and interconnected devices facilitating the rapid development of the Internet of Things (IoT). IoT applications and services are widely adopted in environments such as smart cities, smart industry, autonomous vehicles, and eHealth. As such, IoT devices are ubiquitously connected, transferring sensitive and personal data without requiring human interaction. Consequently, it is crucial to preserve data privacy. This paper presents a comprehensive survey of recent Machine Learning (ML)- and Deep Learning (DL)-based solutions for privacy in IoT. First, we present an in depth analysis of current privacy threats and attacks. Then, for each ML architecture proposed, we present the implementations, details, and the published results. Finally, we identify the most effective solutions for the different threats and attacks.This work is partially supported by the Generalitat de Catalunya under grant 2017 SGR 962 and the HORIZON-GPHOENIX (101070586) and HORIZON-EUVITAMIN-V (101093062) projects.Peer ReviewedPostprint (published version

    Digital Twins and Blockchain for IoT Management

    Full text link
    Security and privacy are primary concerns in IoT management. Security breaches in IoT resources, such as smart sensors, can leak sensitive data and compromise the privacy of individuals. Effective IoT management requires a comprehensive approach to prioritize access security and data privacy protection. Digital twins create virtual representations of IoT resources. Blockchain adds decentralization, transparency, and reliability to IoT systems. This research integrates digital twins and blockchain to manage access to IoT data streaming. Digital twins are used to encapsulate data access and view configurations. Access is enabled on digital twins, not on IoT resources directly. Trust structures programmed as smart contracts are the ones that manage access to digital twins. Consequently, IoT resources are not exposed to third parties, and access security breaches can be prevented. Blockchain has been used to validate digital twins and store their configuration. The research presented in this paper enables multitenant access and customization of data streaming views and abstracts the complexity of data access management. This approach provides access and configuration security and data privacy protection.Comment: Reference: Mayra, Samaniego and Ralph, Deters. 2023. Digital Twins and Blockchain for IoT Management. In The 5th ACM International Symposium on Blockchain and Secure Critical Infrastructure (BSCI '23), July 10-14, 2023, Melbourne, VIC, Australia. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3594556.359461

    Revisiting the Feasibility of Public Key Cryptography in Light of IIoT Communications

    Get PDF
    Digital certificates are regarded as the most secure and scalable way of implementing authentication services in the Internet today. They are used by most popular security protocols, including Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS). The lifecycle management of digital certificates relies on centralized Certification Authority (CA)-based Public Key Infrastructures (PKIs). However, the implementation of PKIs and certificate lifecycle management procedures in Industrial Internet of Things (IIoT) environments presents some challenges, mainly due to the high resource consumption that they imply and the lack of trust in the centralized CAs. This paper identifies and describes the main challenges to implement certificate-based public key cryptography in IIoT environments and it surveys the alternative approaches proposed so far in the literature to address these challenges. Most proposals rely on the introduction of a Trusted Third Party to aid the IIoT devices in tasks that exceed their capacity. The proposed alternatives are complementary and their application depends on the specific challenge to solve, the application scenario, and the capacities of the involved IIoT devices. This paper revisits all these alternatives in light of industrial communication models, identifying their strengths and weaknesses, and providing an in-depth comparative analysis.This work was financially supported by the European commission through ECSEL-JU 2018 program under the COMP4DRONES project (grant agreement N∘ 826610), with national financing from France, Spain, Italy, Netherlands, Austria, Czech, Belgium and Latvia. It was also partially supported by the Ayudas Cervera para Centros Tecnológicos grant of the Spanish Centre for the Development of Industrial Technology (CDTI) under the project EGIDA (CER-20191012), and in part by the Department of Economic Development and Competitiveness of the Basque Government through the project TRUSTIND—Creating Trust in the Industrial Digital Transformation (KK-2020/00054)

    IoT and blockchain paradigms for EV charging system

    Get PDF
    In this research work, we apply the Internet of Things (IoT) paradigm with a decentralized blockchain approach to handle the electric vehicle (EV) charging process in shared spaces, such as condominiums. A mobile app handles the user authentication mechanism to initiate the EV charging process, where a set of sensors are used for measuring energy consumption, and based on a microcontroller, establish data communication with the mobile app. A blockchain handles financial transitions, and this approach can be replicated to other EV charging scenarios, such as public charging systems in a city, where the mobile device provides an authentication mechanism. A user interface was developed to visualize transactions, gather users’ preferences, and handle power charging limitations due to the usage of a shared infrastructure. The developed approach was tested in a shared space with three EVs using a charging infrastructure for a period of 3.5 months.info:eu-repo/semantics/publishedVersio

    Fog computing security and privacy issues, open challenges, and blockchain solution: An overview

    Get PDF
    Due to the expansion growth of the IoT devices, Fog computing was proposed to enhance the low latency IoT applications and meet the distribution nature of these devices. However, Fog computing was criticized for several privacy and security vulnerabilities. This paper aims to identify and discuss the security challenges for Fog computing. It also discusses blockchain technology as a complementary mechanism associated with Fog computing to mitigate the impact of these issues. The findings of this paper reveal that blockchain can meet the privacy and security requirements of fog computing; however, there are several limitations of blockchain that should be further investigated in the context of Fog computing

    Towards Data Sharing across Decentralized and Federated IoT Data Analytics Platforms

    Get PDF
    In the past decade the Internet-of-Things concept has overwhelmingly entered all of the fields where data are produced and processed, thus, resulting in a plethora of IoT platforms, typically cloud-based, that centralize data and services management. In this scenario, the development of IoT services in domains such as smart cities, smart industry, e-health, automotive, are possible only for the owner of the IoT deployments or for ad-hoc business one-to-one collaboration agreements. The realization of "smarter" IoT services or even services that are not viable today envisions a complete data sharing with the usage of multiple data sources from multiple parties and the interconnection with other IoT services. In this context, this work studies several aspects of data sharing focusing on Internet-of-Things. We work towards the hyperconnection of IoT services to analyze data that goes beyond the boundaries of a single IoT system. This thesis presents a data analytics platform that: i) treats data analytics processes as services and decouples their management from the data analytics development; ii) decentralizes the data management and the execution of data analytics services between fog, edge and cloud; iii) federates peers of data analytics platforms managed by multiple parties allowing the design to scale into federation of federations; iv) encompasses intelligent handling of security and data usage control across the federation of decentralized platforms instances to reduce data and service management complexity. The proposed solution is experimentally evaluated in terms of performances and validated against use cases. Further, this work adopts and extends available standards and open sources, after an analysis of their capabilities, fostering an easier acceptance of the proposed framework. We also report efforts to initiate an IoT services ecosystem among 27 cities in Europe and Korea based on a novel methodology. We believe that this thesis open a viable path towards a hyperconnection of IoT data and services, minimizing the human effort to manage it, but leaving the full control of the data and service management to the users' will
    • …
    corecore