7,589 research outputs found

    Body language, security and e-commerce

    Get PDF
    Security is becoming an increasingly more important concern both at the desktop level and at the network level. This article discusses several approaches to authenticating individuals through the use of biometric devices. While libraries might not implement such devices, they may appear in the near future of desktop computing, particularly for access to institutional computers or for access to sensitive information. Other approaches to computer security focus on protecting the contents of electronic transmissions and verification of individual users. After a brief overview of encryption technologies, the article examines public-key cryptography which is getting a lot of attention in the business world in what is called public key infrastructure. It also examines other efforts, such as IBM’s Cryptolope, the Secure Sockets Layer of Web browsers, and Digital Certificates and Signatures. Secure electronic transmissions are an important condition for conducting business on the Net. These business transactions are not limited to purchase orders, invoices, and contracts. This could become an important tool for information vendors and publishers to control access to the electronic resources they license. As license negotiators and contract administrators, librarians need to be aware of what is happening in these new technologies and the impact that will have on their operations

    Device-Based Isolation for Securing Cryptographic Keys

    Get PDF
    In this work, we describe an eective device-based isolation approach for achieving data security. Device-based isolation leverages the proliferation of personal computing devices to provide strong run-time guarantees for the condentiality of secrets. To demonstrate our isolation approach, we show its use in protecting the secrecy of highly sensitive data that is crucial to security operations, such as cryptographic keys used for decrypting ciphertext or signing digital signatures. Private key is usually encrypted when not used, however, when being used, the plaintext key is loaded into the memory of the host for access. In our threat model, the host may be compromised by attackers, and thus the condentiality of the host memory cannot be preserved. We present a novel and practical solution and its prototype called DataGuard to protect the secrecy of the highly sensitive data through the storage isolation and secure tunneling enabled by a mobile handheld device. DataGuard can be deployed for the key protection of individuals or organizations

    Protecting Patient Privacy: Strategies for Regulating Electronic Health Records Exchange

    Get PDF
    The report offers policymakers 10 recommendations to protect patient privacy as New York state develops a centralized system for sharing electronic medical records. Those recommendations include:Require that the electronic systems employed by HIEs have the capability to sort and segregate medical information in order to comply with guaranteed privacy protections of New York and federal law. Presently, they do not.Offer patients the right to opt-out of the system altogether. Currently, people's records can be uploaded to the system without their consent.Require that patient consent forms offer clear information-sharing options. The forms should give patients three options: to opt-in and allow providers access to their electronic medical records, to opt-out except in the event of a medical emergency, or to opt-out altogether.Prohibit and sanction the misuse of medical information. New York must protect patients from potential bad actors--that small minority of providers who may abuse information out of fear, prejudice or malice.Prohibit the health information-sharing networks from selling data. The State Legislature should pass legislation prohibiting the networks from selling patients' private health information
    • …
    corecore