493 research outputs found

    A Secure Authentication Framework to Guarantee the Traceability of Avatars in Metaverse

    Full text link
    Metaverse is a vast virtual environment parallel to the physical world in which users enjoy a variety of services acting as an avatar. To build a secure living habitat, it's vital to ensure the virtual-physical traceability that tracking a malicious player in the physical world via his avatars in virtual space. In this paper, we propose a two-factor authentication framework based on chameleon signature and biometric-based authentication. First, aiming at disguise in virtual space, we propose a chameleon collision signature algorithm to achieve the verifiability of the avatar's virtual identity. Second, facing at impersonation in physical world, we construct an avatar's identity model based on the player's biometric template and the chameleon key to realize the verifiability of the avatar's physical identity. Finally, we design two decentralized authentication protocols based on the avatar's identity model to ensure the consistency of the avatar's virtual and physical identities. Security analysis indicates that the proposed authentication framework guarantees the consistency and traceability of avatar's identity. Simulation experiments show that the framework not only completes the decentralized authentication between avatars but also achieves the virtual-physical tracking.Comment: 12 pages, 9 figure

    A Decentralised Digital Identity Architecture

    Get PDF
    Current architectures to validate, certify, and manage identity are based on centralised, top-down approaches that rely on trusted authorities and third-party operators. We approach the problem of digital identity starting from a human rights perspective, with a primary focus on identity systems in the developed world. We assert that individual persons must be allowed to manage their personal information in a multitude of different ways in different contexts and that to do so, each individual must be able to create multiple unrelated identities. Therefore, we first define a set of fundamental constraints that digital identity systems must satisfy to preserve and promote privacy as required for individual autonomy. With these constraints in mind, we then propose a decentralised, standards-based approach, using a combination of distributed ledger technology and thoughtful regulation, to facilitate many-to-many relationships among providers of key services. Our proposal for digital identity differs from others in its approach to trust in that we do not seek to bind credentials to each other or to a mutually trusted authority to achieve strong non-transferability. Because the system does not implicitly encourage its users to maintain a single aggregated identity that can potentially be constrained or reconstructed against their interests, individuals and organisations are free to embrace the system and share in its benefits.Comment: 30 pages, 10 figures, 3 table

    Biometrics for internet‐of‐things security: A review

    Get PDF
    The large number of Internet‐of‐Things (IoT) devices that need interaction between smart devices and consumers makes security critical to an IoT environment. Biometrics offers an interesting window of opportunity to improve the usability and security of IoT and can play a significant role in securing a wide range of emerging IoT devices to address security challenges. The purpose of this review is to provide a comprehensive survey on the current biometrics research in IoT security, especially focusing on two important aspects, authentication and encryption. Regarding authentication, contemporary biometric‐based authentication systems for IoT are discussed and classified based on different biometric traits and the number of biometric traits employed in the system. As for encryption, biometric‐cryptographic systems, which integrate biometrics with cryptography and take advantage of both to provide enhanced security for IoT, are thoroughly reviewed and discussed. Moreover, challenges arising from applying biometrics to IoT and potential solutions are identified and analyzed. With an insight into the state‐of‐the‐art research in biometrics for IoT security, this review paper helps advance the study in the field and assists researchers in gaining a good understanding of forward‐looking issues and future research directions

    Data interoperability and privacy schemes in healthcare data using Blockchain technology

    Get PDF
    Abstract. Electronic Health/Medical Records (EHR/EMR) lay the foundation for securely maintaining medical records. The traditional EHR systems are not effectively managed data manipulation, delayed communication, trustless data storage, data cooperation, and distribution. Blockchain technology can play a major role in healthcare cases. This is because it uses decentralized distributed ledgers to securely manage all parties within the network. It also handles individual data through smart contracts, which can be pre-programmed by the patient for access and maintenance of healthcare data. This thesis focuses on exploring the blockchain in digital healthcare services such as Electronic Health/Medical Records (EHR/EMR). Blockchain-based implementations of Ethereum allow patients to store their medical data with smart contracts that can perform activities such as Registration, Data Append, and Data Retrieve. The challenges faced during the implementation of blockchain protocols are discussed and analyzed in the scope of finding sustainable solutions to develop secure and reliable operation
    • 

    corecore