4,423 research outputs found

    A multi-candidate electronic voting scheme with unlimited participants

    Full text link
    In this paper a new multi-candidate electronic voting scheme is constructed with unlimited participants. The main idea is to express a ballot to allow voting for up to k out of the m candidates and unlimited participants. The purpose of vote is to select more than one winner among mm candidates. Our result is complementary to the result by Sun peiyong′' s scheme, in the sense, their scheme is not amenable for large-scale electronic voting due to flaw of ballot structure. In our scheme the vote is split and hidden, and tallying is made for Go¨delG\ddot{o}del encoding in decimal base without any trusted third party, and the result does not rely on any traditional cryptography or computational intractable assumption. Thus the proposed scheme not only solves the problem of ballot structure, but also achieves the security including perfect ballot secrecy, receipt-free, robustness, fairness and dispute-freeness.Comment: 6 page

    A two authorities electronic vote scheme

    Full text link
    [EN] In this paper we propose a new electronic multi-authority voting system based on blind signatures. We focus on the open problem of the efficiency of electronic voting systems. Most of the proposed systems rely on complex architectures or expensive proofs, in this work we aim to reduce the time-complexity of the voting process, both for the voter and the authorities involved. Our system is focused on simplicity and it is based on the assumption of two unrelated entities. This simplicity makes our approach scalable and flexible to multiple kinds of elections. We propose a method that limits the number of authorities to only 2 of them; we reduce the overall number of modular operations; and, propose a method which cut downs the interactions needed to cast a vote. The result is a voting protocol whose complexity scales linearly with the number of votes.Larriba-Flor, AM.; Sempere Luna, JM.; López Rodríguez, D. (2020). A two authorities electronic vote scheme. Computers & Security. 97:1-12. https://doi.org/10.1016/j.cose.2020.101940S11297Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Communications of the ACM, 13(7), 422-426. doi:10.1145/362686.362692Brams S., Fishburn P.C.. 2007. Approval voting Springer ScienceCarroll, T. E., & Grosu, D. (2009). A secure and anonymous voter-controlled election scheme. Journal of Network and Computer Applications, 32(3), 599-606. doi:10.1016/j.jnca.2008.07.010Chaum, D. L. (1981). Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM, 24(2), 84-90. doi:10.1145/358549.358563Cramer, R., Gennaro, R., & Schoenmakers, B. (1997). A secure and optimally efficient multi-authority election scheme. European Transactions on Telecommunications, 8(5), 481-490. doi:10.1002/ett.4460080506Desmedt, Y. G. (2010). Threshold cryptography. European Transactions on Telecommunications, 5(4), 449-458. doi:10.1002/ett.4460050407Elgamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 31(4), 469-472. doi:10.1109/tit.1985.1057074Juang, W.-S. (2002). A Verifiable Multi-Authority Secret Election Allowing Abstention from Voting. The Computer Journal, 45(6), 672-682. doi:10.1093/comjnl/45.6.672Menezes A., van Oorschot P.C., Vanstone S.A.. 1996. Handbook of Applied Cryptography.Parhami, B. (1994). Voting algorithms. IEEE Transactions on Reliability, 43(4), 617-629. doi:10.1109/24.370218Rabin, M. O. (1980). Probabilistic Algorithms in Finite Fields. SIAM Journal on Computing, 9(2), 273-280. doi:10.1137/0209024Rabin, M. O. (1983). Transaction protection by beacons. Journal of Computer and System Sciences, 27(2), 256-267. doi:10.1016/0022-0000(83)90042-9Salazar, J. L., Piles, J. J., Ruiz-Mas, J., & Moreno-Jiménez, J. M. (2010). Security approaches in e-cognocracy. Computer Standards & Interfaces, 32(5-6), 256-265. doi:10.1016/j.csi.2010.01.004Nguyen, T. A. T., & Dang, T. K. (2013). Enhanced security in internet voting protocol using blind signature and dynamic ballots. Electronic Commerce Research, 13(3), 257-272. doi:10.1007/s10660-013-9120-5Wu, Z.-Y., Wu, J.-C., Lin, S.-C., & Wang, C. (2014). An electronic voting mechanism for fighting bribery and coercion. Journal of Network and Computer Applications, 40, 139-150. doi:10.1016/j.jnca.2013.09.011Yang, X., Yi, X., Nepal, S., Kelarev, A., & Han, F. (2018). A Secure Verifiable Ranked Choice Online Voting System Based on Homomorphic Encryption. IEEE Access, 6, 20506-20519. doi:10.1109/access.2018.2817518Yi, X., & Okamoto, E. (2013). Practical Internet voting system. Journal of Network and Computer Applications, 36(1), 378-387. doi:10.1016/j.jnca.2012.05.00

    RIES: Internet voting in action

    Get PDF
    RIES stands for Rijnland Internet Election System. It is an online voting system that was developed by one of the Dutch local authorities on water management. The system has been used twice in the fall of 2004 for in total approximately two million potential voters. In this paper we describe how this system works. Furthermore we do not only describe how the outcome of the elections can be verified but also how it has been verified by us. To conclude the paper we describe some possible points for improvement

    What proof do we prefer? Variants of verifiability in voting

    Get PDF
    In this paper, we discuss one particular feature of Internet voting, verifiability, against the background of scientific literature and experiments in the Netherlands. In order to conceptually clarify what verifiability is about, we distinguish classical verifiability from constructive veriability in both individual and universal verification. In classical individual verifiability, a proof that a vote has been counted can be given without revealing the vote. In constructive individual verifiability, a proof is only accepted if the witness (i.e. the vote) can be reconstructed. Analogous concepts are de- fined for universal veriability of the tally. The RIES system used in the Netherlands establishes constructive individual verifiability and constructive universal verifiability, whereas many advanced cryptographic systems described in the scientific literature establish classical individual verifiability and classical universal verifiability. If systems with a particular kind of verifiability continue to be used successfully in practice, this may influence the way in which people are involved in elections, and their image of democracy. Thus, the choice for a particular kind of verifiability in an experiment may have political consequences. We recommend making a well-informed democratic choice for the way in which both individual and universal verifiability should be realised in Internet voting, in order to avoid these unconscious political side-effects of the technology used. The safest choice in this respect, which maintains most properties of current elections, is classical individual verifiability combined with constructive universal verifiability. We would like to encourage discussion about the feasibility of this direction in scientific research

    A secure electronic voting scheme

    Get PDF
    In this paper a new electronic voting scheme is described which guarantees coercion-resistance as well as privacy, eligibility, unreusability and verifiability. The proposed protocol can be implemented in practical environment, since it does not require untappable channel or voting booth, only anonymous channels are applied
    • …
    corecore