78 research outputs found

    The Most Common Characteristics of Fragile Video Watermarking: A Review

    Get PDF
    The progress of network and multimedia technologies has been phenomenal during the previous two decades. Unauthorized users will be able to copy, retransmit, modify reproduction, and upload the contents more easily as a result of this innovation. Malicious attackers are quite concerned about the development and widespread use of digital video. Digital watermarking technology gives solutions to the aforementioned problems. Watermarking methods can alleviate these issues by embedding a secret watermark in the original host data, allowing the genuine user or file owner to identify any manipulation. In this study, lots of papers have been analyzed and studied carefully, in the period 2011–2022. The historical basis of the subject should not be forgotten so studying old research will give a clear idea of the topic. To aid future researchers in this subject, we give a review of fragile watermarking approaches and some related papers presented in recent years. This paper presents a comparison of many relevant works in this field based on some of the outcomes and improvements gained in these studies, which focuses on the common characteristics that increase the effect of watermarking techniques such as invisibility, tamper detection, recovery, and security &nbsp

    Image Tamper Detection and Recovery by Intersecting Signatures

    Get PDF
    In this paper, we propose an exact image authentication scheme that can, in the best case, detect image tampering with the accuracy of one pixel. This method is based on constructing blocks in the image in such a manner that they intersect with one another in different directions. Such a technique is very useful to identify whether an individual image pixel has been tampered with. Moreover, the tampered region can be well recovered with the embedded recover data

    Content Fragile Watermarking for H.264/AVC Video Authentication

    Get PDF
    Discrete Cosine transform (DCT) to generate the authentication data that are treated as a fragile watermark. This watermark is embedded in the motion vectors (MVs) The advances in multimedia technologies and digital processing tools have brought with them new challenges for the source and content authentication. To ensure the integrity of the H.264/AVC video stream, we introduce an approach based on a content fragile video watermarking method using an independent authentication of each Group of Pictures (GOPs) within the video. This technique uses robust visual features extracted from the video pertaining to the set of selected macroblocs (MBs) which hold the best partition mode in a tree-structured motion compensation process. An additional security degree is offered by the proposed method through using a more secured keyed function HMAC-SHA-256 and randomly choosing candidates from already selected MBs. In here, the watermark detection and verification processes are blind, whereas the tampered frames detection is not since it needs the original frames within the tampered GOPs. The proposed scheme achieves an accurate authentication technique with a high fragility and fidelity whilst maintaining the original bitrate and the perceptual quality. Furthermore, its ability to detect the tampered frames in case of spatial, temporal and colour manipulations, is confirmed

    A Novel Technique for Secure Information Transmission in Videos Using Salt Cryptography

    Get PDF
    This paper presents a new technique for transmitting secret information securely from one party to another by embedding this information into a video after encryption through salt cryptography. We have tried to utilize the advantages of salt cryptography which has been ignored by data hiding community. In this encryption method some random data is added to the secret keys and passwords. We will define this random data as a salt which is needed to access the encrypted data, along with the password. Alone these passwords have no use since they will be able to locate the hidden data only when mixed with proper salt. This salt is managed by a certified third party. Different salt is created for different pairs of communicating parties. The purpose of salt is to add arbitrary random data to the string being hashed, such that you increase the length of input to hash. We have also introduced the concept of Enterprise Dependent Value (EDD), which are the embedding values corresponding to the binary digits and are specific to the communicating enterprises. The effectiveness of the techniques has been shown through experimental results. The performance of the proposed technique has been compared with the other techniques of watermarking, steganography and encryption. Keywords: Cryptography, Decryption , Encryption , Salt, Steganography , Video watermarkin

    Identification of Sparse Audio Tampering Using Distributed Source Coding and Compressive Sensing Techniques

    Get PDF
    In the past few years, a large amount of techniques have been proposed to identify whether a multimedia content has been illegally tampered or not. Nevertheless, very few efforts have been devoted to identifying which kind of attack has been carried out, especially due to the large data required for this task. We propose a novel hashing scheme which exploits the paradigms of compressive sensing and distributed source coding to generate a compact hash signature, and we apply it to the case of audio content protection. The audio content provider produces a small hash signature by computing a limited number of random projections of a perceptual, time-frequency representation of the original audio stream; the audio hash is given by the syndrome bits of an LDPC code applied to the projections. At the content user side, the hash is decoded using distributed source coding tools. If the tampering is sparsifiable or compressible in some orthonormal basis or redundant dictionary, it is possible to identify the time-frequency position of the attack, with a hash size as small as 200 bits/second; the bit saving obtained by introducing distributed source coding ranges between 20% to 70%

    Robust image hashing using ring partition-PGNMF and local features

    Get PDF

    Survey on relational database watermarking techniques

    Get PDF
    Digital watermarking has been in multimedia data use over the past years. Recently it has become applicable in relational database system not only to secure copyright ownership but also to ensure data contents integrity. Further, it is used in locating tampered and modified places. However, the watermarking relational database has its own requirements, challenges, attacks and limitations. This paper, surveys recent database watermarking techniques focusing on the importance of watermarking relational database, the difference between watermarking relational database and multimedia objects, the issues in watermarking relational database, type of attacks on watermarked database, classifications, distortion introduced and the embedded information. The comparative study shows that watermarking relational database can be an effective tool for copyright protection, tampered detection, and hacker tracing while maintaining the integrity of data contents. In addition, this study explores the current issues in watermarking relational database as well as the significant differences between watermarking multimedia data and relational database contents. Finally, it provides a classification of database watermarking techniques according to the way of selecting the candidate key attributes and tuples, distortion introduced and decoding methods used
    corecore