1,775 research outputs found

    Infrastructural Security for Virtualized Grid Computing

    Get PDF
    The goal of the grid computing paradigm is to make computer power as easy to access as an electrical power grid. Unlike the power grid, the computer grid uses remote resources located at a service provider. Malicious users can abuse the provided resources, which not only affects their own systems but also those of the provider and others. Resources are utilized in an environment where sensitive programs and data from competitors are processed on shared resources, creating again the potential for misuse. This is one of the main security issues, since in a business environment competitors distrust each other, and the fear of industrial espionage is always present. Currently, human trust is the strategy used to deal with these threats. The relationship between grid users and resource providers ranges from highly trusted to highly untrusted. This wide trust relationship occurs because grid computing itself changed from a research topic with few users to a widely deployed product that included early commercial adoption. The traditional open research communities have very low security requirements, while in contrast, business customers often operate on sensitive data that represents intellectual property; thus, their security demands are very high. In traditional grid computing, most users share the same resources concurrently. Consequently, information regarding other users and their jobs can usually be acquired quite easily. This includes, for example, that a user can see which processes are running on another user´s system. For business users, this is unacceptable since even the meta-data of their jobs is classified. As a consequence, most commercial customers are not convinced that their intellectual property in the form of software and data is protected in the grid. This thesis proposes a novel infrastructural security solution that advances the concept of virtualized grid computing. The work started back in 2007 and led to the development of the XGE, a virtual grid management software. The XGE itself uses operating system virtualization to provide a virtualized landscape. Users’ jobs are no longer executed in a shared manner; they are executed within special sandboxed environments. To satisfy the requirements of a traditional grid setup, the solution can be coupled with an installed scheduler and grid middleware on the grid head node. To protect the prominent grid head node, a novel dual-laned demilitarized zone is introduced to make attacks more difficult. In a traditional grid setup, the head node and the computing nodes are installed in the same network, so a successful attack could also endanger the user´s software and data. While the zone complicates attacks, it is, as all security solutions, not a perfect solution. Therefore, a network intrusion detection system is enhanced with grid specific signatures. A novel software called Fence is introduced that supports end-to-end encryption, which means that all data remains encrypted until it reaches its final destination. It transfers data securely between the user´s computer, the head node and the nodes within the shielded, internal network. A lightweight kernel rootkit detection system assures that only trusted kernel modules can be loaded. It is no longer possible to load untrusted modules such as kernel rootkits. Furthermore, a malware scanner for virtualized grids scans for signs of malware in all running virtual machines. Using virtual machine introspection, that scanner remains invisible for most types of malware and has full access to all system calls on the monitored system. To speed up detection, the load is distributed to multiple detection engines simultaneously. To enable multi-site service-oriented grid applications, the novel concept of public virtual nodes is presented. This is a virtualized grid node with a public IP address shielded by a set of dynamic firewalls. It is possible to create a set of connected, public nodes, either present on one or more remote grid sites. A special web service allows users to modify their own rule set in both directions and in a controlled manner. The main contribution of this thesis is the presentation of solutions that convey the security of grid computing infrastructures. This includes the XGE, a software that transforms a traditional grid into a virtualized grid. Design and implementation details including experimental evaluations are given for all approaches. Nearly all parts of the software are available as open source software. A summary of the contributions and an outlook to future work conclude this thesis

    Virtual Machine Image Management for Elastic Resource Usage in Grid Computing

    Get PDF
    Grid Computing has evolved from an academic concept to a powerful paradigm in the area of high performance computing (HPC). Over the last few years, powerful Grid computing solutions were developed that allow the execution of computational tasks on distributed computing resources. Grid computing has recently attracted many commercial customers. To enable commercial customers to be able to execute sensitive data in the Grid, strong security mechanisms must be put in place to secure the customers' data. In contrast, the development of Cloud Computing, which entered the scene in 2006, was driven by industry: it was designed with respect to security from the beginning. Virtualization technology is used to separate the users e.g., by putting the different users of a system inside a virtual machine, which prevents them from accessing other users' data. The use of virtualization in the context of Grid computing has been examined early and was found to be a promising approach to counter the security threats that have appeared with commercial customers. One main part of the work presented in this thesis is the Image Creation Station (ICS), a component which allows users to administer their virtual execution environments (virtual machines) themselves and which is responsible for managing and distributing the virtual machines in the entire system. In contrast to Cloud computing, which was designed to allow even inexperienced users to execute their computational tasks in the Cloud easily, Grid computing is much more complex to use. The ICS makes it easier to use the Grid by overcoming traditional limitations like installing needed software on the compute nodes that users use to execute the computational tasks. This allows users to bring commercial software to the Grid for the first time, without the need for local administrators to install the software to computing nodes that are accessible by all users. Moreover, the administrative burden is shifted from the local Grid site's administrator to the users or experienced software providers that allow the provision of individually tailored virtual machines to each user. But the ICS is not only responsible for enabling users to manage their virtual machines themselves, it also ensures that the virtual machines are available on every site that is part of the distributed Grid system. A second aspect of the presented solution focuses on the elasticity of the system by automatically acquiring free external resources depending on the system's current workload. In contrast to existing systems, the presented approach allows the system's administrator to add or remove resource sets during runtime without needing to restart the entire system. Moreover, the presented solution allows users to not only use existing Grid resources but allows them to scale out to Cloud resources and use these resources on-demand. By ensuring that unused resources are shut down as soon as possible, the computational costs of a given task are minimized. In addition, the presented solution allows each user to specify which resources can be used to execute a particular job. This is useful when a job processes sensitive data e.g., that is not allowed to leave the company. To obtain a comparable function in today's systems, a user must submit her computational task to a particular resource set, losing the ability to automatically schedule if more than one set of resources can be used. In addition, the proposed solution prioritizes each set of resources by taking different metrics into account (e.g. the level of trust or computational costs) and tries to schedule the job to resources with the highest priority first. It is notable that the priority often mimics the physical distance from the resources to the user: a locally available Cluster usually has a higher priority due to the high level of trust and the computational costs, that are usually lower than the costs of using Cloud resources. Therefore, this scheduling strategy minimizes the costs of job execution by improving security at the same time since data is not necessarily transferred to remote resources and the probability of attacks by malicious external users is minimized. Bringing both components together results in a system that adapts automatically to the current workload by using external (e.g., Cloud) resources together with existing locally available resources or Grid sites and provides individually tailored virtual execution environments to the system's users

    A TrustZone-assisted hypervisor supporting dynamic partial reconfiguration

    Get PDF
    Dissertação de mestrado em Engenharia Eletrónica Industrial e ComputadoresTraditionally, embedded systems were dedicated single-purpose systems characterised by hardware resource constraints and real-time requirements. However, with the growing computing abilities and resources on general purpose platforms, systems that were formerly divided to provide different functions are now merging into one System on Chip. One of the solutions that allows the coexistence of heterogeneous environments on the same hardware platform is virtualization technology, usually in the form of an hypervisor that manage different instances of OSes and arbitrate their execution and resource usage, according to the chosen policy. ARM TrustZone has been one of the technologies used to implement a virtualization solution with low overhead and low footprint. µRTZVisor a TrustZoneassisted hypervisor with a microkernel-like architecture - is a bare-metal embedded hypervisor that relies on TrustZone hardware to provide the foundation to implement strong spatial and temporal isolation between multiple guest OSes. The use of Partial Reconfiguration allows the designer to define partial reconfigurable regions in the FPGA and reconfigure them during runtime. This allows the system to have its functionalities changed during runtime using Dynamic Partial Reconfiguration (DPR), without needing to reconfigure all the FPGA. This is a major advantage, as it decreases the configuration overhead since partial bitstreams are smaller than full bitstreams and the reconfiguration time is shorter. Another advantage is reducing the need for larger logic areas and consequently reducing their power consumption. Therefore, a hypervisor that supports DPR brings benefits to the system. Aside from better FPGA resources usage, another improvement that it brings, is when critical hardware modules misbehave and the hardware module can be replaced. It also enables the controlling and changing of hardware accelerators dynamically, which can be used to meet the guest OSes requests for hardware resources as the need appears. The propose of this thesis is extending the µRTZVisor to have a DPR mechanism.Tradicionalmente, os sistemas embebidos eram sistemas dedicados a uma única tarefa e apenas limitados pelos seus requisitos de tempo real e de hardware. Contudo, como as plataformas de uso geral têm cada vez mais recursos e capacidade de processamento, muitos dos sistemas que executavam separadamente, passaram a apenas um sistema em plataforma recorrendo à tecnologia de virtualização, normalmente como um hipervisor que é capaz de gerir múltiplos sistemas operativos arbitrando a sua execução e acesso aos recursos da plataforma de acordo com uma politica predefinida. A tecnologia TrustZone da ARM tem sido uma das soluções implementadas sem ter grande impacto na performance dos sistemas operativos. µRTZVisor é um dos hipervisores baseados na TrustZone para implementar um isolamento espacial e temporal entre múltiplos sistemas operativos, sendo que defere de outras uma vez que é de arquitectura microkernel. O uso de Reconfiguração Parcial Dinâmica (RPD) permite ao designer definir várias regiões reconfiguráveis no FPGA que podem ser dinamicamente reconfiguradas durante o período de execução. Esta é uma grande vantagem, porque reduz os tempos de reconfiguração de módulos reconfiguráveis uma vez que os seus bitstreams são mais pequenos que bitstreams para a plataforma toda. A tecnologia também permite que nos FPGAs não sejam necessárias áreas lógicas tão grandes, o que também reduz o consumo de energia da plataforma. Um hipervisor que suporte RPD traz grandes benefícios para o sistema, nomeadamente melhor uso dos recursos de FPGA, implementação de aceleradores em hardware dinamicamente reconfiguráveis, e tratamento de falhas no hardware. Se houverem módulos que estejam a demonstrar comportamentos inesperados estes podem ser reconfigurados. O uso de aceleradores reconfiguráveis permite que o hardware seja adaptável conforme a necessidade destes pelos diferentes sistemas operativos. A proposta desta dissertação é então estender o µRTZVisor para ter a capacidade de usar módulos reconfiguráveis por RPD

    Quark: A High-Performance Secure Container Runtime for Serverless Computing

    Full text link
    Secure container runtimes serve as the foundational layer for creating and running containers, which is the bedrock of emerging computing paradigms like microservices and serverless computing. Although existing secure container runtimes indeed enhance security via running containers over a guest kernel and a Virtual Machine Monitor (VMM or Hypervisor), they incur performance penalties in critical areas such as networking, container startup, and I/O system calls. In our practice of operating microservices and serverless computing, we build a high-performance secure container runtime named Quark. Unlike existing solutions that rely on traditional VM technologies by importing Linux for the guest kernel and QEMU for the VMM, we take a different approach to building Quark from the ground up, paving the way for extreme customization to unlock high performance. Our development centers on co-designing a custom guest kernel and a VMM for secure containers. To this end, we build a lightweight guest OS kernel named QKernel and a specialized VMM named QVisor. The QKernel-QVisor codesign allows us to deliver three key advancements: high-performance RDMA-based container networking, fast container startup mode, and efficient mechanisms for executing I/O syscalls. In our practice with real-world apps like Redis, Quark cuts down P95 latency by 79.3% and increases throughput by 2.43x compared to Kata. Moreover, Quark container startup achieves 96.5% lower latency than the cold-start mode while saving 81.3% memory cost to the keep-warm mode. Quark is open-source with an industry-standard codebase in Rust.Comment: arXiv admin note: text overlap with arXiv:2305.10621. The paper on arXiv:2305.10621 presents a detailed version of the TSoR module in Quar

    A Taxonomy of Virtualization Security Issues in Cloud Computing Environments

    Get PDF
    Objectives: To identify the main challenges and security issues of virtualization in cloud computing environments. It reviews the alleviation techniques for improving the security of cloud virtualization systems. Methods/ Statistical Analysis: Virtualization is a fundamental technology for cloud computing, and for this reason, any cloud vulnerabilities and threats affect virtualization. In this study, the systematic literature review is performed to find out the vulnerabilities and risks of virtualization in cloud computing and to identify threats, and attacks result from those vulnerabilities. Furthermore, we discover and analyze the effective mitigation techniques that are used to protect, secure, and manage virtualization environments. Findings: Thirty vulnerabilities are identified, explained, and classified into six proposed classes. Furthermore, fifteen main virtualization threats and attacks ar defined according to exploited vulnerabilities in a cloud environment. Application/Improvements: A set of common mitigation solutions are recognized and discovered to alleviate the virtualization security risks. These reviewed techniques are analyzed and evaluated according to five specified security criteria
    • …
    corecore