12,283 research outputs found

    An Authentication Protocol for Future Sensor Networks

    Full text link
    Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis and simulated the SMSN and previously proposed schemes in an automated protocol verifier tool. Finally, we compared the computational complexity and communication cost against well-known authentication protocols.Comment: This article is accepted for the publication in "Sensors" journal. 29 pages, 15 figure

    Query Based Location Aware Energy Efficient Secure Multicast Routing for Wireless Sensor Networks Using Fuzzy Logic

    Get PDF
    In Wireless Sensor Networks (WSNs), balancing authentication and energy is a major concern while deploying for wireless applications. Due to the presence of attackers, node consumes excessive energy for packet replication or transmission. In existing work, it is observed that attention was not done on balancing energy and data authentication. Location aided routing will also support for achieving high network lifetime. Fuzzy decision approach was widely used in sensor network for ensuring quality of routing and transmission. In the proposed work, Fuzzy enhanced query based secure energy efficient multicast routing is implemented. Query based location based cluster formation is done for quick packet arrival. Optimal multicast routes are found to forward the packets with reliability. The reliable routes are identified using reliable index. Fuzzy decision model is integrated to provide secure and energy based network model for packet transmission. Network Simulator (NS2.35) is used for simulation for analyzing the performance of proposed protocol in terms of various network parameters

    Securing Heterogeneous Wireless Sensor Networks: Breaking and Fixing a Three-Factor Authentication Protocol

    Get PDF
    Heterogeneous wireless sensor networks (HWSNs) are employed in many real-time applications, such as Internet of sensors (IoS), Internet of vehicles (IoV), healthcare monitoring, and so on. As wireless sensor nodes have constrained computing, storage and communication capabilities, designing energy-efficient authentication protocols is a very important issue in wireless sensor network security. Recently, Amin et al. presented an untraceable and anonymous three-factor authentication (3FA) scheme for HWSNs and argued that their protocol is efficient and can withstand the common security threats in this sort of networks. In this article, we show how their protocol is not immune to user impersonation, de-synchronization and traceability attacks. In addition, an adversary can disclose session key under the typical assumption that sensors are not tamper-resistant. To overcome these drawbacks, we improve the Amin et al.'s protocol. First, we informally show that our improved scheme is secure against the most common attacks in HWSNs in which the attacks against Amin et al.'s protocol are part of them. Moreover, we verify formally our proposed protocol using the BAN logic. Compared with the Amin et al.'s scheme, the proposed protocol is both more efficient and more secure to be employed which renders the proposal suitable for HWSN networks.This work was partially supported by the MINECO grant TIN2016-79095-C2-2-R (SMOG-DEV—Security mechanisms for fog computing: advanced security for devices); and by the CAM grant S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data, and Risks)

    Broadcast Authentication for Wireless Sensor Networks Using Nested Hashing and the Chinese Remainder Theorem

    Get PDF
    Secure broadcasting is an essential feature for critical operations in wireless sensor network (WSNs). However, due to the limited resources of sensor networks, verifying the authenticity for broadcasted messages is a very difficult issue. ÎŒTESLA is a broadcast authentication protocol, which uses network-wide loose time synchronization with one-way hashed keys to provide the authenticity verification. However, it suffers from several flaws considering the delay tolerance, and the chain length restriction. In this paper, we propose a protocol which provides broadcast authentication for wireless sensor networks. This protocol uses a nested hash chain of two different hash functions and the Chinese Remainder Theorem (CRT). The two different nested hash functions are employed for the seed updating and the key generation. Each sensor node is challenged independently with a common broadcasting message using the CRT. Our algorithm provides forward and non-restricted key generation, and in addition, no time synchronization is required. Furthermore, receivers can instantly authenticate packets in real time. Moreover, the comprehensive analysis shows that this scheme is efficient and practical, and can achieve better performance than the ÎŒTESLA system

    Lightweight authentication for recovery in wireless sensor networks

    Full text link
    Wireless sensor networks (WSNs) suffer from a wide range of security attacks due to their limited processing and energy capabilities. Their use in numerous mission critical applications, however, requires that fast recovery from such attacks be achieved. Much research has been completed on detection of security attacks, while very little attention has been paid to recovery from an attack. In this paper, we propose a novel, lightweight authentication protocol that can secure network and node recovery operations such as re-clustering and reprogramming. Our protocol is based on hash functions and we compare the performance of two well-known lightweight hash functions, SHA-1 and Rabin. We demonstrate that our authentication protocol can be implemented efficiently on a sensor network test-bed with TelosB motes. Further, our experimental results show that our protocol is efficient both in terms of computational overhead and execution times which makes it suitable for low resourced sensor devices.<br /

    A Secure Key Management Scheme for Hierarchical WSN

    Get PDF
    Many applications require WSNs to exchange sensitive information with the applications having high reliability requirements and a high level of security to succeed. The WSN nodes are often placed in hostile or adverse environment and their security concerns become a challenging issue. WSNs nodes are resource constrained and hence incorporating traditional security methods involving large computation overheads are not feasible. Key management is a fundamental part for any secure communication in WSNs. The key management system should be substantially secure, robust and efficient for a secure communication protocol. Many key establishment techniques have come up to address the tradeoffs between limited memory and security but choosing an effective scheme is debatable. Here in this paper, a new key management scheme is put forward based on authentication and key sharing for WSN. Our protocol is suitable for managing keys in a hierarchical network consisting of clusters with the aim of ensuring the survivability of the network. Keywords: Authentication, Clusters, Key Management, Wireless Sensor Network

    E-SAP: Efficient-Strong Authentication Protocol for Healthcare Applications Using Wireless Medical Sensor Networks

    Get PDF
    A wireless medical sensor network (WMSN) can sense humans’ physiological signs without sacrificing patient comfort and transmit patient vital signs to health professionals’ hand-held devices. The patient physiological data are highly sensitive and WMSNs are extremely vulnerable to many attacks. Therefore, it must be ensured that patients’ medical signs are not exposed to unauthorized users. Consequently, strong user authentication is the main concern for the success and large scale deployment of WMSNs. In this regard, this paper presents an efficient, strong authentication protocol, named E-SAP, for healthcare application using WMSNs. The proposed E-SAP includes: (1) a two-factor (i.e., password and smartcard) professional authentication; (2) mutual authentication between the professional and the medical sensor; (3) symmetric encryption/decryption for providing message confidentiality; (4) establishment of a secure session key at the end of authentication; and (5) professionals can change their password. Further, the proposed protocol requires three message exchanges between the professional, medical sensor node and gateway node, and achieves efficiency (i.e., low computation and communication cost). Through the formal analysis, security analysis and performance analysis, we demonstrate that E-SAP is more secure against many practical attacks, and allows a tradeoff between the security and the performance cost for healthcare application using WMSNs

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table
    • 

    corecore