367 research outputs found

    ScotGrid: Providing an Effective Distributed Tier-2 in the LHC Era

    Get PDF
    ScotGrid is a distributed Tier-2 centre in the UK with sites in Durham, Edinburgh and Glasgow. ScotGrid has undergone a huge expansion in hardware in anticipation of the LHC and now provides more than 4MSI2K and 500TB to the LHC VOs. Scaling up to this level of provision has brought many challenges to the Tier-2 and we show in this paper how we have adopted new methods of organising the centres, from fabric management and monitoring to remote management of sites to management and operational procedures, to meet these challenges. We describe how we have coped with different operational models at the sites, where Glagsow and Durham sites are managed "in house" but resources at Edinburgh are managed as a central university resource. This required the adoption of a different fabric management model at Edinburgh and a special engagement with the cluster managers. Challenges arose from the different job models of local and grid submission that required special attention to resolve. We show how ScotGrid has successfully provided an infrastructure for ATLAS and LHCb Monte Carlo production. Special attention has been paid to ensuring that user analysis functions efficiently, which has required optimisation of local storage and networking to cope with the demands of user analysis. Finally, although these Tier-2 resources are pledged to the whole VO, we have established close links with our local physics user communities as being the best way to ensure that the Tier-2 functions effectively as a part of the LHC grid computing framework..Comment: Preprint for 17th International Conference on Computing in High Energy and Nuclear Physics, 7 pages, 1 figur

    SIMDAT

    No full text

    A Secure Grid Medical Data Manager Interfaced to the gLite Middleware

    Get PDF
    International audienceThe medical community is producing and manipulating a tremendous volume of digital data for which computerized archiving, processing and analysis is needed. Grid infrastructures are promising for dealing with challenges arising in computerized medicine but the manipulation of medical data on such infrastructures faces both the problem of interconnecting medical information systems to Grid middlewares and of preserving patients' privacy in a wide and distributed multi-user system. These constraints are often limiting the use of Grids for manipulating sensitive medical data. This paper describes our design of a medical data management system taking advantage of the advanced gLite data management services, developed in the context of the EGEE project, to fulfill the stringent needs of the medical community. It ensures medical data protection through strict data access control, anonymization and encryption. The multi-level access control provides the flexibility needed for imple! menting complex medical use-cases. Data anonymization prevents the exposure of most sensitive data to unauthorized users, and data encryption guarantees data protection even when it is stored at remote sites. Moreover, the developed prototype provides a Grid storage resource manager (SRM) interface to standard medical DICOM servers thereby enabling transparent access to medical data without interfering with medical practice

    Learning by doing on the EGEE GRID and first performance analysis of CODESA-3D multirun submission

    Get PDF
    The project TEMA (Training on Environmental Modelling and Applications) is a CRS4 training initiative in the field of computational hydrology and grid computing (Jan-Sept, 2006). The personnel involved were Fabrizio Murgia (trainee) and Giuditta Lecca (tutor). The objectives of the project were: " To aquire specialized skills about grid computing with special emphasis on computational sub-surface hydrology; " To develop and test software procedures to run Monte Carlo simulations on the EGEE production grid; " To produce a technical report and some seminars about grid computing. The aquired competences and skills will be used in the ongoing projects GRIDA3, CyberSAR and DEGREE

    Proxy dynamic delegation in grid gateway

    Full text link
    Nowadays one of the main obstacles the research comes up against is the difficulty in accessing the required computational resources. Grid is able to offer the user a wide set of resources, even if they are often too hard to exploit for non expert end user. Use simplification has today become a common practice in the access and utilization of Cloud, Grid, and data center resources. With the launch of L-GRID gateway, we introduced a new way to deal with Grid portals. L-GRID is an extremely light portal developed in order to access the EGI Grid infrastructure via Web, allowing users to submit their jobs from whatever Web browser in a few minutes, without any knowledge about the underlying Grid infrastructure.Comment: 6 page

    The Clarens Web Service Framework for Distributed Scientific Analysis in Grid Projects

    Get PDF
    Large scientific collaborations are moving towards service oriented architecutres for implementation and deployment of globally distributed systems. Clarens is a high performance, easy to deploy Web Service framework that supports the construction of such globally distributed systems. This paper discusses some of the core functionality of Clarens that the authors believe is important for building distributed systems based on Web Services that support scientific analysis

    NetJobs: A new approach to network monitoring for the Grid using Grid jobs

    Get PDF
    With grid computing, the far-fl�ung and disparate IT resources act as a single "virtual datacenter". Grid computing interfaces heterogeneous IT resources so they are available when and where we need them. Grid allows us to provision applications and allocate capacity among research and business groups that are geographically and organizationally dispersed. Building a high availability Grid is hold as the next goal to achieve: protecting against computer failures and site failures to avoid downtime of resource and honor Service Level Agreements. Network monitoring has a key role in this challenge. This work is concerning the design and the prototypal implementation of a new approach to Network monitoring for the Grid based on the usage of Grid scheduled jobs. This work was carried out within the Network Support task (SA2) of the Enabling Grids for E-sciencE (EGEE) project. This thesis is organized as follows: Chapter 1: Grid Computing From the origins of Grid Computing to the latest projects. Conceptual framework and main features characterizing many kind of popular grids will be presented. Chapter 2: The EGEE and EGI projects This chapter describes the Enabling Grids for E-sciencE (EGEE) project and the European Grid Infrastructure (EGI). EGEE project (2004-2010) was the�flagship Grid infrastructure project of the EU. The third and last two-year phase of the project (started on 1 May 2008) was financed with a total budget of around 47 million euro, with a further estimated 50 million euro worth of computing resources contributed by the partners. A total manpower of 9,000 Person Months, of which over 4,500 Person Months has been contributed by the partners from their own funding sources. At its close, EGEE represented a worldwide infrastructure of approximately to 200,000 CPU cores, collaboratively hosted by more than 300 centres around the world. By the end of the project, around 13 million jobs were executed on the EGEE grid each month. The new organization, EGI.eu, has then been created to continue the coordination and evolution of the European Grid Infrastructure (EGI) based on EGEE Grid. Chapter3: gLite Middleware Chapter three gives an overview on the gLite Grid Middleware. gLite is the middleware stack for grid computing used by the EGEE and EGI projects with in a very large variety of scientifi�c domains. Born from the collaborative efforts of more than 80 people in 12 different academic and industrial research centers as part of the EGEE Project, gLite provides a complete set of services for building a production grid infrastructure. gLite provides a framework for building grid applications tapping into the power of distributed computing and storage resources across the Internet. The gLite services are currently adopted by more than 250 Computing Centres and used by more than 15000 researchers in Europe and around the world. Chapter 4: Network Activity in EGEE/EGI Grid infrastructures are distributed by nature, involving many sites, normally in different administrative domains. Individual sites are connected together by a network, which is therefore a critical part of the whole Grid infrastructure; without the network there is no Grid. Monitoring is a key component for the successful operation of any infrastructure, helping in the discovery and diagnosis of any problem which may arise. Network monitoring is able to contribute to the day-to-day operations of the Grid by helping to provide answers to specific questions from users and site administrators. This chapter will discuss all the effort lavished by EGEE and EGI in the Grid Network domain. Chapter 5: Grid Network Monitoring based on Grid Jobs Net Jobs is a prototype of a light weight solution for the Grid network monitoring. A job-based approach has been used in order to prove the feasibility of this non intrusive solution. It is currently configured to monitor eight production sites spread from Italy to France but this method could be applied to the vast majority of Grid sites. The prototype provides coherent RTT, MTU, number of hops and TCP achievable bandwidth tests

    The DECIDE Project: Designing and Implementing a Prototype Service for Supporting Early Diagnosis of Alzheimer's Disease

    Get PDF
    This paper will present the design and implementation challenges of the innovative DECIDE service, to support research and early diagnosis of Alzheimer’s and other neurodegenerative diseases. DECIDE service, which is based on a Grid eInfrastructure, offers a set of tools providing quantitative measurements, to help researchers and clinicians make more informed diagnosis. As the service specifically targets the clinical community, it differs significantly from other initiatives since it needs to comply with the requirements imposed by the clinical routine in terms of accuracy, robustness, ease of use, data handling policies, adherence to clinical praxis. Moreover, sustainability aspects will also be discussed, since DECIDE aims to propose such service as a reference at European level, possibly extending it to other pathologies. We will then summarize the main results obtained to date, and the possible future developments
    • …
    corecore