6,047 research outputs found

    Adaptive secure network model for dynamic wireless mesh network

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.We as an advanced civilization rely on communication networks for a lot of important tasks. They are used to share information between vital systems, provide us with our pin-point location, access various digital resources and to stay connected with each other. Due to its necessity and enormity, maintaining and securing such a communication medium is an important task. As most communication networks rely on centralized systems, they are bound by the control of a central entity and are unable to keep up with the current growth of the network and advancements in electronic devices. The next step in an inter-connected world requires a decentralized distributed system that can also provide high levels of security. One possible solution is a dynamic distributed wireless mesh network as it provides all the features of a traditional network along with the flexibility of wireless communication and an infrastructure less distributed setup. The network can be created by connecting mobile or stationary devices together using wireless communication devices (such as smartphones, laptops, hot-spots, etc). As the network is created by multiple devices, it would not break-down if some of the devices were disabled. On the contrary, as the network uses hopping for message transmission using dynamic routes, it can self-heal by creating alternate routes if a device was to fail. As the workings and features of a dynamic mesh network differ from the traditional network, it also requires a modified security framework that can provide high levels of security whilst taking benefit of the dynamic mesh network’s unique features. This thesis investigates the problems and limitations linked to secure dynamic wireless mesh networks and how they can be improved upon. In addition to the routing protocols used and how they can be improved upon, the thesis also elaborates on the various security concerns with such networks. As distributed networks aren’t dependent on a central entity, enabling various security features such as authentication are a major challenge. In addition to the decentralized nature of the networks, a single security scheme would not be able to cover the various types of requirements a given scenario in the network might have. Along with authentication, providing end-to-end encryption is also an important component towards ensuring the data travelling through the network is secure and not tampered with. Encryption is also essential in a dynamic wireless mesh network as the data transmitted travels through multiple devices on the network before reaching the destination node and can be easily compromised if not secured. With such an importance of encryption, the network also requires a key management and distribution framework. As traditional network uses a centralized system for maintaining and distributing cryptographic keys in the network, it is a big challenge to implement the same in a distributed network with minimal dependence on a central entity. The key exchange must consider the nature of the network and accordingly incorporate improvements to be able to function in a distributed network. This thesis explores the above areas to propose a new network model for a secure dynamic wireless mesh network including a new routing scheme and a security framework comprising a hybrid encryption scheme, a hybrid authentication scheme and an improved key exchange and management scheme. This thesis demonstrates that our solutions not only strengthen and secure the dynamic wireless mesh networks but also significantly improve the performance and efficiency as compared to existing approaches

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page
    • …
    corecore