62,104 research outputs found

    Scalable and Secure Aggregation in Distributed Networks

    Full text link
    We consider the problem of computing an aggregation function in a \emph{secure} and \emph{scalable} way. Whereas previous distributed solutions with similar security guarantees have a communication cost of O(n3)O(n^3), we present a distributed protocol that requires only a communication complexity of O(nlog⁥3n)O(n\log^3 n), which we prove is near-optimal. Our protocol ensures perfect security against a computationally-bounded adversary, tolerates (1/2−ϔ)n(1/2-\epsilon)n malicious nodes for any constant 1/2>Ï”>01/2 > \epsilon > 0 (not depending on nn), and outputs the exact value of the aggregated function with high probability

    Deterministic Secure Positioning in Wireless Sensor Networks

    Get PDF
    Properly locating sensor nodes is an important building block for a large subset of wireless sensor networks (WSN) applications. As a result, the performance of the WSN degrades significantly when misbehaving nodes report false location and distance information in order to fake their actual location. In this paper we propose a general distributed deterministic protocol for accurate identification of faking sensors in a WSN. Our scheme does \emph{not} rely on a subset of \emph{trusted} nodes that are not allowed to misbehave and are known to every node in the network. Thus, any subset of nodes is allowed to try faking its position. As in previous approaches, our protocol is based on distance evaluation techniques developed for WSN. On the positive side, we show that when the received signal strength (RSS) technique is used, our protocol handles at most ⌊n2⌋−2\lfloor \frac{n}{2} \rfloor-2 faking sensors. Also, when the time of flight (ToF) technique is used, our protocol manages at most ⌊n2⌋−3\lfloor \frac{n}{2} \rfloor - 3 misbehaving sensors. On the negative side, we prove that no deterministic protocol can identify faking sensors if their number is ⌈n2⌉−1\lceil \frac{n}{2}\rceil -1. Thus our scheme is almost optimal with respect to the number of faking sensors. We discuss application of our technique in the trusted sensor model. More precisely our results can be used to minimize the number of trusted sensors that are needed to defeat faking ones

    Privacy-Preserving Genetic Relatedness Test

    Get PDF
    An increasing number of individuals are turning to Direct-To-Consumer (DTC) genetic testing to learn about their predisposition to diseases, traits, and/or ancestry. DTC companies like 23andme and Ancestry.com have started to offer popular and affordable ancestry and genealogy tests, with services allowing users to find unknown relatives and long-distant cousins. Naturally, access and possible dissemination of genetic data prompts serious privacy concerns, thus motivating the need to design efficient primitives supporting private genetic tests. In this paper, we present an effective protocol for privacy-preserving genetic relatedness test (PPGRT), enabling a cloud server to run relatedness tests on input an encrypted genetic database and a test facility's encrypted genetic sample. We reduce the test to a data matching problem and perform it, privately, using searchable encryption. Finally, a performance evaluation of hamming distance based PP-GRT attests to the practicality of our proposals.Comment: A preliminary version of this paper appears in the Proceedings of the 3rd International Workshop on Genome Privacy and Security (GenoPri'16

    Teleoperation of passivity-based model reference robust control over the internet

    Get PDF
    This dissertation offers a survey of a known theoretical approach and novel experimental results in establishing a live communication medium through the internet to host a virtual communication environment for use in Passivity-Based Model Reference Robust Control systems with delays. The controller which is used as a carrier to support a robust communication between input-to-state stability is designed as a control strategy that passively compensates for position errors that arise during contact tasks and strives to achieve delay-independent stability for controlling of aircrafts or other mobile objects. Furthermore the controller is used for nonlinear systems, coordination of multiple agents, bilateral teleoperation, and collision avoidance thus maintaining a communication link with an upper bound of constant delay is crucial for robustness and stability of the overall system. For utilizing such framework an elucidation can be formulated by preparing site survey for analyzing not only the geographical distances separating the nodes in which the teleoperation will occur but also the communication parameters that define the virtual topography that the data will travel through. This survey will first define the feasibility of the overall operation since the teleoperation will be used to sustain a delay based controller over the internet thus obtaining a hypothetical upper bound for the delay via site survey is crucial not only for the communication system but also the delay is required for the design of the passivity-based model reference robust control. Following delay calculation and measurement via site survey, bandwidth tests for unidirectional and bidirectional communication is inspected to ensure that the speed is viable to maintain a real-time connection. Furthermore from obtaining the results it becomes crucial to measure the consistency of the delay throughout a sampled period to guarantee that the upper bound is not breached at any point within the communication to jeopardize the robustness of the controller. Following delay analysis a geographical and topological overview of the communication is also briefly examined via a trace-route to understand the underlying nodes and their contribution to the delay and round-trip consistency. To accommodate the communication channel for the controller the input and output data from both nodes need to be encapsulated within a transmission control protocol via a multithreaded design of a robust program within the C language. The program will construct a multithreaded client-server relationship in which the control data is transmitted. For added stability and higher level of security the channel is then encapsulated via an internet protocol security by utilizing a protocol suite for protecting the communication by authentication and encrypting each packet of the session using negotiation of cryptographic keys during each session
    • 

    corecore