33 research outputs found

    Deteção de intrusões de rede baseada em anomalias

    Get PDF
    Dissertação de mestrado integrado em Eletrónica Industrial e ComputadoresAo longo dos últimos anos, a segurança de hardware e software tornou-se uma grande preocupação. À medida que a complexidade dos sistemas aumenta, as suas vulnerabilidades a sofisticadas técnicas de ataque têm proporcionalmente escalado. Frequentemente o problema reside na heterogenidade de dispositivos conectados ao veículo, tornando difícil a convergência da monitorização de todos os protocolos num único produto de segurança. Por esse motivo, o mercado requer ferramentas mais avançadas para a monitorizar ambientes críticos à vida humana, tais como os nossos automóveis. Considerando que existem várias formas de interagir com os sistemas de entretenimento do automóvel como o Bluetooth, o Wi-fi ou CDs multimédia, a necessidade de auditar as suas interfaces tornou-se uma prioridade, uma vez que elas representam um sério meio de aceeso à rede interna do carro. Atualmente, os mecanismos de segurança de um carro focam-se na monitotização da rede CAN, deixando para trás as tecnologias referidas e não contemplando os sistemas não críticos. Como exemplo disso, o Bluetooth traz desafios diferentes da rede CAN, uma vez que interage diretamente com o utilizador e está exposto a ataques externos. Uma abordagem alternativa para tornar o automóvel num sistema mais robusto é manter sob supervisão as comunicações que com este são estabelecidas. Ao implementar uma detecção de intrusão baseada em anomalias, esta dissertação visa analisar o protocolo Bluetooth no sentido de identificar interações anormais que possam alertar para uma situação fora dos padrões de utilização. Em última análise, este produto de software embebido incorpora uma grande margem de auto-aprendizagem, que é vital para enfrentar quaisquer ameaças desconhecidas e aumentar os níveis de segurança globais. Ao longo deste documento, apresentamos o estudo do problema seguido de uma metodologia alternativa que implementa um algoritmo baseado numa LSTM para prever a sequência de comandos HCI correspondentes a tráfego Bluetooth normal. Os resultados mostram a forma como esta abordagem pode impactar a deteção de intrusões nestes ambientes ao demonstrar uma grande capacidade para identificar padrões anómalos no conjunto de dados considerado.In the last few years, hardware and software security have become a major concern. As the systems’ complexity increases, its vulnerabilities to several sophisticated attack techniques have escalated likewise. Quite often, the problem lies in the heterogeneity of the devices connected to the vehicle, making it difficult to converge the monitoring systems of all existing protocols into one security product. Thereby, the market requires more refined tools to monitor life-risky environments such as personal vehicles. Considering that there are several ways to interact with the car’s infotainment system, such as Wi-fi, Bluetooth, or CD player, the need to audit these interfaces has become a priority as they represent a serious channel to reach the internal car network. Nowadays, security in car networks focuses on CAN bus monitoring, leaving behind the aforementioned technologies and not contemplating other non-critical systems. As an example of these concerns, Bluetooth brings different challenges compared to CAN as it interacts directly with the user, being exposed to external attacks. An alternative approach to converting modern vehicles and their set of computers into more robust systems is to keep track of established communications with them. By enforcing anomaly-based intrusion detection this dissertation aims to analyze the Bluetooth protocol to identify abnormal user interactions that may alert for a non conforming pattern. Ultimately, such embedded software product incorporates a self-learning edge, which is vital to face newly developed threats and increasing global security levels. Throughout this document, we present the study case followed by an alternative methodology that implements an LSTM based algorithm to predict a sequence of HCI commands corresponding to normal Bluetooth traffic. The results show how this approach can impact intrusion detection in such environments by expressing a high capability of identifying abnormal patterns in the considered data

    SWAP: Smart WAter Protocol for the Irrigation of Urban Gardens in Smart Cities

    Full text link
    [EN] The implementation of Smart City projects has experimented a surge in the recent years with examples such as Smart Santander or Barcelona Smart City. Among the different domains that comprise the Smart City, water management has a great importance, more so in areas with water scarcity. Furthermore, water from different sources such as treated sewage water or collected rainwater can be utilized to address water needs where the use of potable water is not necessary. Therefore, the implementation of smart systems for the irrigation of urban gardens and other urban vegetated areas is of great importance to manage both water needs and the available resources. In this paper, a communication protocol for smart irrigation systems designed within the context of the Smart City is presented. The protocol enables the communication among devices with both LoRa and WiFi wireless technologies. Tests were performed with low-cost devices in an urban area. The results demonstrate the good performance of the proposal, obtaining the minimum packet loss by adding a 500 ms delay at the CH node when transmitting messages from WiFi to LoRa and vice versa.This work was supported by the Researchers Supporting Project, King Saud University, Riyadh, Saudi Arabia, under Grant RSP-2021/295.Aldegheishem, A.; Alrajeh, N.; García-García, L.; Lloret, J. (2022). SWAP: Smart WAter Protocol for the Irrigation of Urban Gardens in Smart Cities. IEEE Access. 10:39239-39247. https://doi.org/10.1109/ACCESS.2022.316557939239392471

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Improving Access and Mental Health for Youth Through Virtual Models of Care

    Get PDF
    The overall objective of this research is to evaluate the use of a mobile health smartphone application (app) to improve the mental health of youth between the ages of 14–25 years, with symptoms of anxiety/depression. This project includes 115 youth who are accessing outpatient mental health services at one of three hospitals and two community agencies. The youth and care providers are using eHealth technology to enhance care. The technology uses mobile questionnaires to help promote self-assessment and track changes to support the plan of care. The technology also allows secure virtual treatment visits that youth can participate in through mobile devices. This longitudinal study uses participatory action research with mixed methods. The majority of participants identified themselves as Caucasian (66.9%). Expectedly, the demographics revealed that Anxiety Disorders and Mood Disorders were highly prevalent within the sample (71.9% and 67.5% respectively). Findings from the qualitative summary established that both staff and youth found the software and platform beneficial

    Wireless body area network revisited

    Get PDF
    Rapid growth of wireless body area networks (WBANs) technology allowed the fast and secured acquisition as well as exchange of vast amount of data information in diversified fields. WBANs intend to simplify and improve the speed, accuracy, and reliability of communica-tions from sensors (interior motors) placed on and/or close to the human body, reducing the healthcare cost remarkably. However, the secu-rity of sensitive data transfer using WBANs and subsequent protection from adversaries attack is a major issue. Depending on the types of applications, small and high sensitive sensors having several nodes obtained from invasive/non-invasive micro- and nano- technology can be installed on the human body to capture useful information. Lately, the use of micro-electro-mechanical systems (MEMS) and integrated circuits in wireless communications (WCs) became widespread because of their low-power operation, intelligence, accuracy, and miniaturi-zation. IEEE 802.15.6 and 802.15.4j standards have already been set to specifically regulate the medical networks and WBANs. In this view, present communication provides an all-inclusive overview of the past development, recent progress, challenges and future trends of security technology related to WBANs

    A communication method for remote control of grid-tied converters

    Get PDF
    This thesis presents selection, design, development, and validation of a communica- tion method for remote control of a grid-tied inverter. There is a gap in the smart grid field for a secure and reliable communication method. To fulfill this gap three low-cost wireless such as LoRa, Radio Teletype, and UHF/ VHF based data communication technologies were tested, compared and presented in the thesis. Based on the test results, range, data transfer rate, and power consumption, LoRa based communica- tion are selected as the most suitable method to satisfy the problem. Security and reliability issues have been identified in the LoRa based communication. Therefore, an encryption algorithm is developed to improve the security of the LoRa communication and data have been logged into a local data storage to improve the reliability. To increase the reliability of the developed system further, Power Line Carrier (PLC) communication link has been combined in parallel to the LoRa communication link. To evaluate the reliability of the developed system fault tree and Monte-Carlo simula- tion based reliability model has been proposed. Based on available data and assumed data reliability of the system had been calculated. Results obtained by testing the developed system with an Inverter which is being designed at the University of New Brunswick, presented in the thesis verify the operation of the development. Therefore, this study substantially contributes to the field of SCADA systems by developing a low cost and reliable communication method
    corecore