54 research outputs found

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    The need for polymorphic encryption algorithms: A review paper

    Get PDF
    Current symmetric ciphers including the Advanced Encryption Standard (AES) are deterministic and open. Using standard ciphers is necessary for interoperability. However, it gives the potential opponent significant leverage, as it facilitates all the knowledge and time he needs to design effective attacks. In this review paper, we highlight prominent contributions in the field of symmetric encryption. Furthermore, we shed light on some contributions that aim at mitigating potential threats when using standard symmetric ciphers. Furthermore, we highlight the need for more practical contributions in the direction of polymorphic or multishape ciphers

    IoT-Based Multi-Dimensional Chaos Mapping System for Secure and Fast Transmission of Visual Data in Smart Cities

    Get PDF
    A “smart city” sends data from many sensors to a cloud server for local authorities and the public to connect. Smart city residents communicate mostly through images and videos. Many image security algorithms have been proposed to improve locals’ lives, but a high-class redundancy method with a small space requirement is still needed to acquire and protect this sensitive data. This paper proposes an IoT-based multi-dimensional chaos mapping system for secure and fast transmission of visual data in smart cities, which uses the five dimensional Gauss Sine Logistic system to generate hyper-chaotic sequences to encrypt images. The proposed method also uses pixel position permutation and Singular Value Decomposition with Discrete fractional cosine transform to compress and protect the sensitive image data. To increase security, we use a chaotic system to construct the chaotic sequences and a diffusion matrix. Furthermore, numerical simulation results and theoretical evaluations validate the suggested scheme’s security and efficacy after compression encryption.publishedVersio

    Recent Advancements on Symmetric Cryptography Techniques -A Comprehensive Case Study

    Get PDF
    Now a day2019;s Cryptography is one of the broad areas for researchers; because of the conventional block cipher has lost its potency due to the sophistication of modern systems that can break it by brute force. Due to its importance, several cryptography techniques and algorithms are adopted by many authors to secure the data, but still there is a scope to improve the previous approaches. For this necessity, we provide the comprehensive survey which will help the researchers to provide better techniques

    Image encryption techniques: A comprehensive review

    Get PDF
    This paper presents an exhaustive review of research within the field of image encryption techniques. It commences with a general introduction to image encryption, providing an overview of the fundamentals. Subsequently, it explores a comprehensive exploration of chaos-based image encryption, encompassing various methods and approaches within this domain. These methods include full encryption techniques as well as selective encryption strategies, offering insights into their principles and applications. The authors place significant emphasis on surveying prior research contributions, shedding light on noteworthy developments within the field. Additionally, the paper addresses emerging challenges and issues that have arisen as a consequence of these advancements

    Molecules for security measures: From keypad locks to advanced communication protocols

    Get PDF
    The idea of using molecules in the context of information security has sparked the interest of researchers from many scientific disciplines. This is clearly manifested in the diversity of the molecular platforms and the analytical techniques used for this purpose, some of which we highlight in this Tutorial Review. Moreover, those molecular systems can be used to emulate a broad spectrum of security measures. For a long time, molecular keypad locks enjoyed a clear preference and the review starts off with a description of how these devices developed. In the last few years, however, the field has evolved into something larger. Examples include more complex authentication protocols (multi-factor authentication and one-time passwords), the recognition of erroneous procedures in data transmission (parity devices), as well as steganographic and cryptographic protection

    User-controlled cyber-security using automated key generation

    Get PDF
    Traditionally, several different methods are fully capable of providing an adequate degree of security to the threats and attacks that exists for revealing different keys. Though almost all the traditional methods give a good level of immunity to any possible breach in security keys, the biggest issue that exist with these methods is the dependency over third-party applications. Therefore, use of third-party applications is not an acceptable method to be used by high-security applications. For high-security applications, it is more secure that the key generation process is in the hands of the end users rather than a third-party. Giving access to third parties for high-security applications can also make the applications more venerable to data theft, security breach or even a loss in their integrity. In this research, the evolutionary computing tool Eureqa is used for the generation of encryption keys obtained by modelling pseudo-random input data. Previous approaches using this tool have required a calculation time too long for practical use and addressing this drawback is the main focus of the research. The work proposes a number of new approaches to the generation of secret keys for the encryption and decryption of data files and they are compared in their ability to operate in a secure manner using a range of statistical tests and in their ability to reduce calculation time using realistic practical assessments. A number of common tests of performance are the throughput, chi-square, histogram, time for encryption and decryption, key sensitivity and entropy analysis. From the results of the statistical tests, it can be concluded that the proposed data encryption and decryption algorithms are both reliable and secure. Being both reliable and secure eliminates the need for the dependency over third-party applications for the security keys. It also takes less time for the users to generate highly secure keys compared to the previously known techniques.The keys generated via Eureqa also have great potential to be adapted to data communication applications which require high security
    corecore