786 research outputs found

    Solving the Secure Storage Dilemma: An Efficient Scheme for Secure Deduplication with Privacy-Preserving Public Auditing

    Get PDF
    Existing cloud storage systems obtain the data in its plaintext form and perform conventional (server-side) deduplication mechanisms. However, disclosing the data to the cloud can potentially threaten the security and privacy of users, which is of utmost importance for a real-world cloud storage. This can be solved by secure deduplication mechanisms which enables the user to encrypt the data on the client-side (or via an encryption-as-a-service module) before uploading it to the cloud storage. Conventional client-side encryption solutions unfortunately make the deduplication more challenging. Privacy-preserving public auditing schemes, on the other hand, is also crucial because the clients outsource their data to the cloud providers and then permanently deletes the data from their local storages. In this paper, we consider the problem of secure deduplication over encrypted data stored in the cloud while supporting a privacy-preserving public auditing mechanism.We show that existing solutions cannot support both goals simultaneously due to the conflict of their security and efficiency requirements. In this respect, we present an efficient and secure deduplication scheme that supports client-side encryption and privacy-preserving public auditing. We finally show that our scheme provides better security and efficiency with respect to the very recently proposed existing schemes

    Block-level De-duplication with Encrypted Data

    Get PDF
    Deduplication is a storage saving technique which has been adopted by many cloud storage providers such as Dropbox. The simple principle of deduplication is that duplicate data uploaded by different users are stored only once. Unfortunately, deduplication is not compatible with encryption. As a scheme that allows deduplication of encrypted data segments, we propose ClouDedup, a secure and efficient storage service which guarantees blocklevel deduplication and data confidentiality at the same time. ClouDedup strengthens convergent encryption by employing a component that implements an additional encryption operation and an access control mechanism. We also propose to introduce an additional component which is in charge of providing a key management system for data blocks together with the actual deduplication operation. We show that the overhead introduced by these new components is minimal and does not impact the overall storage and computational costs

    Secure Batch Deduplication Without Dual Servers in Backup System

    Get PDF
    Cloud storage provides highly available and low cost resources to users. However, as massive amounts of outsourced data grow rapidly, an effective data deduplication scheme is necessary. This is a hot and challenging field, in which there are quite a few researches. However, most of previous works require dual-server fashion to be against brute-force attacks and do not support batch checking. It is not practicable for the massive data stored in the cloud. In this paper, we present a secure batch deduplication scheme for backup system. Besides, our scheme resists the brute-force attacks without the aid of other servers. The core idea of the batch deduplication is to separate users into different groups by using short hashes. Within each group, we leverage group key agreement and symmetric encryption to achieve secure batch checking and semantically secure storage. We also extensively evaluate its performance and overhead based on different datasets. We show that our scheme saves the data storage by up to 89.84%. These results show that our scheme is efficient and scalable for cloud backup system and can also ensure data confidentiality

    What if keys are leaked? Towards practical and secure re-encryption in deduplication-based cloud storage

    Get PDF
    By only storing a unique copy of duplicate data possessed by different data owners, deduplication can significantly reduce storage cost, and hence is used broadly in public clouds. When combining with confidentiality, deduplication will become problematic as encryption performed by different data owners may differentiate identical data which may then become not deduplicable. The Message-Locked Encryption (MLE) is thus utilized to derive the same encryption key for the identical data, by which the encrypted data are still deduplicable after being encrypted by different data owners. As keys may be leaked over time, re-encrypting outsourced data is of paramount importance to ensure continuous confidentiality, which, however, has not been well addressed in the literature. In this paper, we design SEDER, a SEcure client-side Deduplication system enabling Efficient Re-encryption for cloud storage by (1) leveraging all-or-nothing transform (AONT), (2) designing a new delegated re-encryption (DRE), and (3) proposing a new proof of ownership scheme for encrypted cloud data (PoWC). Security analysis and experimental evaluation validate security and efficiency of SEDER, respectively

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view
    • …
    corecore