61 research outputs found

    Security Enhanced Symmetric Key Encryption Employing an Integer Code for the Erasure Channel

    Get PDF
    An instance of the framework for cryptographic security enhancement of symmetric-key encryption employing a dedicated error correction encoding is addressed. The main components of the proposal are: (i) a dedicated error correction coding and (ii) the use of a dedicated simulator of the noisy channel. The proposed error correction coding is designed for the binary erasure channel where at most one bit is erased in each codeword byte. The proposed encryption has been evaluated in the traditional scenario where we consider the advantage of an attacker to correctly decide to which of two known messages the given ciphertext corresponds. The evaluation shows that the proposed encryption provides a reduction of the considered attacker’s advantage in comparison with the initial encryption setting. The implementation complexity of the proposed encryption is considered, and it implies a suitable trade-off between increased security and increased implementation complexity

    From Information Theory Puzzles in Deletion Channels to Deniability in Quantum Cryptography

    Get PDF
    Research questions, originally rooted in quantum key exchange (QKE), have branched off into independent lines of inquiry ranging from information theory to fundamental physics. In a similar vein, the first part of this thesis is dedicated to information theory problems in deletion channels that arose in the context of QKE. From the output produced by a memoryless deletion channel with a uniformly random input of known length n, one obtains a posterior distribution on the channel input. The difference between the Shannon entropy of this distribution and that of the uniform prior measures the amount of information about the channel input which is conveyed by the output of length m. We first conjecture on the basis of experimental data that the entropy of the posterior is minimized by the constant strings 000..., 111... and maximized by the alternating strings 0101..., 1010.... Among other things, we derive analytic expressions for minimal entropy and propose alternative approaches for tackling the entropy extremization problem. We address a series of closely related combinatorial problems involving binary (sub/super)-sequences and prove the original minimal entropy conjecture for the special cases of single and double deletions using clustering techniques and a run-length encoding of strings. The entropy analysis culminates in a fundamental characterization of the extremal entropic cases in terms of the distribution of embeddings. We confirm the minimization conjecture in the asymptotic limit using results from hidden word statistics by showing how the analytic-combinatorial methods of Flajolet, Szpankowski and Vallée, relying on generating functions, can be applied to resolve the case of fixed output length and n → ∞. In the second part, we revisit the notion of deniability in QKE, a topic that remains largely unexplored. In a work by Donald Beaver it is argued that QKE protocols are not necessarily deniable due to an eavesdropping attack that limits key equivocation. We provide more insight into the nature of this attack and discuss how it extends to other prepare-and-measure QKE schemes such as QKE obtained from uncloneable encryption. We adopt the framework for quantum authenticated key exchange developed by Mosca et al. and extend it to introduce the notion of coercer-deniable QKE, formalized in terms of the indistinguishability of real and fake coercer views. We also elaborate on the differences between our model and the standard simulation-based definition of deniable key exchange in the classical setting. We establish a connection between the concept of covert communication and deniability by applying results from a work by Arrazola and Scarani on obtaining covert quantum communication and covert QKE to propose a simple construction for coercer-deniable QKE. We prove the deniability of this scheme via a reduction to the security of covert QKE. We relate deniability to fundamental concepts in quantum information theory and suggest a generic approach based on entanglement distillation for achieving information-theoretic deniability, followed by an analysis of other closely related results such as the relation between the impossibility of unconditionally secure quantum bit commitment and deniability. Finally, we present an efficient coercion-resistant and quantum-secure voting scheme, based on fully homomorphic encryption (FHE) and recent advances in various FHE primitives such as hashing, zero-knowledge proofs of correct decryption, verifiable shuffles and threshold FHE

    Homomorphic Encryption for Machine Learning in Medicine and Bioinformatics

    Get PDF
    Machine learning techniques are an excellent tool for the medical community to analyzing large amounts of medical and genomic data. On the other hand, ethical concerns and privacy regulations prevent the free sharing of this data. Encryption methods such as fully homomorphic encryption (FHE) provide a method evaluate over encrypted data. Using FHE, machine learning models such as deep learning, decision trees, and naive Bayes have been implemented for private prediction using medical data. FHE has also been shown to enable secure genomic algorithms, such as paternity testing, and secure application of genome-wide association studies. This survey provides an overview of fully homomorphic encryption and its applications in medicine and bioinformatics. The high-level concepts behind FHE and its history are introduced. Details on current open-source implementations are provided, as is the state of FHE for privacy-preserving techniques in machine learning and bioinformatics and future growth opportunities for FHE

    Propagation of updates to replicas using error-correcting codes

    Get PDF
    With the increase in percentage of replicas of data in the Internet, reducing the amount of bandwidth needed for propagation of updates across the replicas has become a major issue. Objective of our investigation is to design an update propagation mechanism focused on reducing the amount of bandwidth needed to propagate the change across multiple distinct versions of the replicas in a distributed system. We obtain the estimated amount of bytes changed from the user and generate parity information needed to correct these bytes using Error Correcting Codes. Transferring the parity information propagates the update. The updated data can be constructed using the parity information and the outdated data. Our investigation proved that the approach would be bandwidth efficient but computation intensive. We conclude our investigation with an update propagation mechanism that we believe would be less computationally intensive and also reduced bandwidth requirements

    Cache-Timing Techniques: Exploiting the DSA Algorithm

    Get PDF
    Side-channel information is any type of information leaked through unexpected channels due to physical features of a system dealing with data. The memory cache can be used as a side-channel, leakage and exploitation of side-channel information from the executing processes is possible, leading to the recovery of secret information. Cache-based side-channel attacks represent a serious threat to implementations of several cryptographic primitives, especially in shared libraries. This work explains some of the cache-timing techniques commonly used to exploit vulnerable software. Using a particular combination of techniques and exploiting a vulnerability found in the implementation of the DSA signature scheme in the OpenSSL shared library, a cache-timing attack is performed against the DSA’s sliding window exponentiation algorithm. Moreover, the attack is expanded to show that it is possible to perform cache-timing attacks against protocols relying on the DSA signature scheme. SSH and TLS are attacked, leading to a key-recovery attack: 260 SSH-2 handshakes to extract a 1024/160-bit DSA hostkey from an OpenSSH server, and 580 TLS 1.2 handshakes to extract a 2048/256-bit DSA key from an stunnel server
    corecore