527 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Security Analysis and Improvement of an Anonymous Authentication Scheme for Roaming Services

    Get PDF
    An anonymous authentication scheme for roaming services in global mobility networks allows a mobile user visiting a foreign network to achieve mutual authentication and session key establishment with the foreign-network operator in an anonymous manner. In this work, we revisit He et al.’s anonymous authentication scheme for roaming services and present previously unpublished security weaknesses in the scheme: (1) it fails to provide user anonymity against any third party as well as the foreign agent, (2) it cannot protect the passwords of mobile users due to its vulnerability to an offline dictionary attack, and (3) it does not achieve session-key security against a man-in-the-middle attack. We also show how the security weaknesses of He et al.’s scheme can be addressed without degrading the efficiency of the scheme

    Mutual Authentication and Key Exchange Protocols for Roaming Services in Wireless Mobile Networks

    Full text link

    Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation wireless networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to service providers. As WMNs become an increasingly popular replacement technology for last-mile connectivity to the home networking, community and neighborhood networking, it is imperative to design efficient and secure communication protocols for these networks. However, several vulnerabilities exist in currently existing protocols for WMNs. These security loopholes can be exploited by potential attackers to launch attack on WMNs. The absence of a central point of administration makes securing WMNs even more challenging. The broadcast nature of transmission and the dependency on the intermediate nodes for multi-hop communications lead to several security vulnerabilities in WMNs. The attacks can be external as well as internal in nature. External attacks are launched by intruders who are not authorized users of the network. For example, an intruding node may eavesdrop on the packets and replay those packets at a later point of time to gain access to the network resources. On the other hand, the internal attacks are launched by the nodes that are part of the WMN. On example of such attack is an intermediate node dropping packets which it was supposed to forward. This chapter presents a comprehensive discussion on the current authentication and privacy protection schemes for WMN. In addition, it proposes a novel security protocol for node authentication and message confidentiality and an anonymization scheme for privacy protection of users in WMNs.Comment: 32 pages, 10 figures. The work is an extended version of the author's previous works submitted in CoRR: arXiv:1107.5538v1 and arXiv:1102.1226v

    On the security of an anonymous roaming protocol in UMTS mobile networks

    Get PDF
    In this communication, we first show that the privacy-preserving roaming protocol recently proposed for mobile networks cannot achieve the claimed security level. Then we suggest an improved protocol to remedy its security problems

    An enhanced secure delegation-based anonymous authentication protocol for PCSs

    Get PDF
    Rapid development of wireless networks brings about many security problems in portable communication systems (PCSs), which can provide mobile users with an opportunity to enjoy global roaming services. In this regard, designing a secure user authentication scheme, especially for recognizing legal roaming users, is indeed a challenging task. It is noticed that there is no delegation-based protocol for PCSs, which can guarantee anonymity, untraceability, perfect forward secrecy, and resistance of denial-of-service (DoS) attack. Therefore, in this article, we put forward a novel delegation-based anonymous and untraceable authentication protocol, which can guarantee to resolve all the abovementioned security issues and hence offer a solution for secure communications for PCSs

    Seamless connectivity architecture and methods for IoT and wearable devices

    Get PDF
    Wearable and Internet of Things (IoT) devices have the potential to improve lifestyle, personalize receiving treatments or introduce assisted living for elderly people. However, service delivery depends on maintaining and troubleshooting device connectivity to smartphones, where user engagement and technology proficiency represent a possible barrier that prevents a wider adoption, especially in the elderly and disabled population. Low-cost and low-power wearable and IoT devices face challenges when operating out of range of known home networks or pared devices. We propose an architecture and methods to provide seamless connectivity (Se-Co) between devices and wireless networks while maintaining low-power, low-cost and standards compatibility. Through Se-Co, the devices connect without user interaction both in home and in unknown roaming networks while maintaining anonymity, privacy and security. Roaming networks approve data limited connectivity to unknown devices that are able to provide a valid anonymized certificate of compliance and no harm through a home provider. Se-Co enables shifting data processing, such as pattern processing using artificial intelligence, from a wearable device or smartphone towards the cloud. The proposed Se-Co architecture could provide solutions to increase usability of wearable devices and improve their wider adoption, while keeping low the costs of devices, development and services
    corecore