874 research outputs found

    Arc length based WENO scheme for Hamilton-Jacobi Equations

    Full text link
    In this article, novel smoothness indicators are presented for calculating the nonlinear weights of weighted essentially non-oscillatory scheme to approximate the viscosity numerical solutions of Hamilton-Jacobi equations. These novel smoothness indicators are constructed from the derivatives of reconstructed polynomials over each sub-stencil. The constructed smoothness indicators measure the arc-length of the reconstructed polynomials so that the new nonlinear weights could get less absolute truncation error and gives a high-resolution numerical solution. Extensive numerical tests are conducted and presented to show the performance capability and the numerical accuracy of the proposed scheme with the comparison to the classical WENO scheme.Comment: 14 pages, 9 figure

    High-order filtered schemes for time-dependent second order HJB equations

    Full text link
    In this paper, we present and analyse a class of "filtered" numerical schemes for second order Hamilton-Jacobi-Bellman equations. Our approach follows the ideas introduced in B.D. Froese and A.M. Oberman, Convergent filtered schemes for the Monge-Amp\`ere partial differential equation, SIAM J. Numer. Anal., 51(1):423--444, 2013, and more recently applied by other authors to stationary or time-dependent first order Hamilton-Jacobi equations. For high order approximation schemes (where "high" stands for greater than one), the inevitable loss of monotonicity prevents the use of the classical theoretical results for convergence to viscosity solutions. The work introduces a suitable local modification of these schemes by "filtering" them with a monotone scheme, such that they can be proven convergent and still show an overall high order behaviour for smooth enough solutions. We give theoretical proofs of these claims and illustrate the behaviour with numerical tests from mathematical finance, focussing also on the use of backward difference formulae (BDF) for constructing the high order schemes.Comment: 27 pages, 16 figures, 4 table

    Value iteration convergence of ε-monotone schemes for stationary Hamilton-Jacobi equations

    Get PDF
    International audienceWe present an abstract convergence result for the xed point approximation of stationary Hamilton{Jacobi equations. The basic assumptions on the discrete operator are invariance with respect to the addition of constants, "-monotonicity and consistency. The result can be applied to various high-order approximation schemes which are illustrated in the paper. Several applications to Hamilton{Jacobi equations and numerical tests are presented
    • …
    corecore