257 research outputs found

    A PEFKS- and CP-ABE-Based Distributed Security Scheme in Interest-Centric Opportunistic Networks

    Get PDF
    Security is a crucial issue in distributed applications of multihop wireless opportunistic network due to the features of exposed on the fly communication, relaxed end-to-end connectivity, and vague destinations literately. In this paper, we focus on problems of user privacy leakage and end-to-end confidentiality invasion in content-based or interest-centric wireless opportunistic network. And we propose a public-encryption-with-fuzzy-keyword-search- (PEFKS-) and ciphertext-policy-attribute-based-encryption- (CP-ABE-) based distributed security scheme by refining and compromising two-pairing-based encryption, searchable encryption, and attribute-based encryption. Our scheme enables opportunistic forwarding according to fuzzy interests preserving full privacy of users and ensures end-to-end confidentiality with a fine-grained access control strategy in an interest-centric scenario of large-scale wireless opportunistic networks. Finally, we analyze and evaluate the scheme in terms of security and performance

    Extended Functionality in Verifiable Searchable Encryption

    Get PDF
    Abstract. When outsourcing the storage of sensitive data to an (un-trusted) remote server, a data owner may choose to encrypt the data beforehand to preserve confidentiality. However, it is then difficult to efficiently retrieve specific portions of the data as the server is unable to identify the relevant information. Searchable encryption has been well studied as a solution to this problem, allowing data owners and other au-thorised users to generate search queries which the server may execute over the encrypted data to identify relevant data portions. However, many current schemes lack two important properties: verifia-bility of search results, and expressive queries. We introduce Extended Verifiable Searchable Encryption (eVSE) that permits a user to verify that search results are correct and complete. We also permit verifiabl

    An efficient PHR service system supporting fuzzy keyword search and fine-grained access control

    Get PDF
    Outsourcing of personal health record (PHR) has attracted considerable interest recently. It can not only bring much convenience to patients, it also allows efficient sharing of medical information among researchers. As the medical data in PHR is sensitive, it has to be encrypted before outsourcing. To achieve fine-grained access control over the encrypted PHR data becomes a challenging problem. In this paper, we provide an affirmative solution to this problem. We propose a novel PHR service system which supports efficient searching and fine-grained access control for PHR data in a hybrid cloud environment, where a private cloud is used to assist the user to interact with the public cloud for processing PHR data. In our proposed solution, we make use of attribute-based encryption (ABE) technique to obtain fine-grained access control for PHR data. In order to protect the privacy of PHR owners, our ABE is anonymous. That is, it can hide the access policy information in ciphertexts. Meanwhile, our solution can also allow efficient fuzzy search over PHR data, which can greatly improve the system usability. We also provide security analysis to show that the proposed solution is secure and privacy-preserving. The experimental results demonstrate the efficiency of the proposed scheme.Peer ReviewedPostprint (author's final draft

    Efficient Multi-User Keyword Search over Encrypted Data in Cloud Computing

    Get PDF
    As cloud computing becomes prevalent, more and more sensitive information are being centralized into the cloud. For the protection of data privacy, sensitive data usually have to be encrypted before outsourcing, which makes effective data utilization a very challenging task. In this paper, we propose a new method to enable effective fuzzy keyword search in a multi-user system over encrypted cloud data while maintaining keyword privacy. In this new system, differential searching privileges are supported, which is achieved with the technique of attribute-based encryption. Edit distance is utilized to quantify keywords similarity and develop fuzzy keyword search technique, which achieve optimized storage and representation overheads. We further propose a symbol-based trie-traverse searching scheme to improve the search efficiency. Through rigorous security analysis, we show that our proposed solution is secure and privacy-preserving, while correctly realizing the goal of fuzzy keyword search with multiple users

    Survey on securing data storage in the cloud

    Get PDF
    Cloud Computing has become a well-known primitive nowadays; many researchers and companies are embracing this fascinating technology with feverish haste. In the meantime, security and privacy challenges are brought forward while the number of cloud storage user increases expeditiously. In this work, we conduct an in-depth survey on recent research activities of cloud storage security in association with cloud computing. After an overview of the cloud storage system and its security problem, we focus on the key security requirement triad, i.e., data integrity, data confidentiality, and availability. For each of the three security objectives, we discuss the new unique challenges faced by the cloud storage services, summarize key issues discussed in the current literature, examine, and compare the existing and emerging approaches proposed to meet those new challenges, and point out possible extensions and futuristic research opportunities. The goal of our paper is to provide a state-of-the-art knowledge to new researchers who would like to join this exciting new field

    A Hybrid Multi-user Cloud Access Control based Block Chain Framework for Privacy Preserving Distributed Databases

    Get PDF
    Most of the traditional medical applications are insecure and difficult to compute the data integrity with variable hash size. Traditional medical data security systems are insecure and it depend on static parameters for data security. Also, distributed based cloud storage systems are independent of integrity computational and data security due to unstructured data and computational memory. As the size of the data and its dimensions are increasing in the public and private cloud servers, it is difficult to provide the machine learning based privacy preserving in cloud computing environment. Block-chain technology plays a vital role for large cloud databases. Most of the conventional block-chain frameworks are based on the existing integrity and confidentiality models. Also, these models are based on the data size and file format. In this model, a novel integrity verification and encryption framework is designed and implemented in cloud environment.  In order to overcome these problems in the cloud computing environment, a hybrid integrity and security-based block-chain framework is designed and implemented on the large distributed databases. In this framework,a novel decision tree classifier is used along with non-linear mathematical hash algorithm and advanced attribute-based encryption models are used to improve the privacy of multiple users on the large cloud datasets. Experimental results proved that the proposed advanced privacy preserving based block-chain technology has better efficiency than the traditional block-chain based privacy preserving systems on large distributed databases

    Multi - owner Secure Data Sharing in Cloud Computing Environment

    Get PDF
    Data sharing in the cloud is a technique that allows users to conveniently access data over the cloud. The data owner outsources their data in the cloud due to cost reduction and the great conveniences provided by cloud services. Data owner is not able to control over their data, because cloud service provider is a third party provider.  The main crisis with data sharing in the cloud is the privacy and security issues. Various techniques are available to support user privacy and secure data sharing. This paper focus on various schemes to deal with secure data sharing such as Data sharing with forward security, secure data sharing for dynamic groups, Attribute based data sharing, encrypted data sharing and Shared Authority Based Privacy-Preserving Authentication Protocol for access control of outsourced data
    • …
    corecore