643 research outputs found

    Metamodel Instance Generation: A systematic literature review

    Get PDF
    Modelling and thus metamodelling have become increasingly important in Software Engineering through the use of Model Driven Engineering. In this paper we present a systematic literature review of instance generation techniques for metamodels, i.e. the process of automatically generating models from a given metamodel. We start by presenting a set of research questions that our review is intended to answer. We then identify the main topics that are related to metamodel instance generation techniques, and use these to initiate our literature search. This search resulted in the identification of 34 key papers in the area, and each of these is reviewed here and discussed in detail. The outcome is that we are able to identify a knowledge gap in this field, and we offer suggestions as to some potential directions for future research.Comment: 25 page

    Automatic Test Generation for Space

    Get PDF
    The European Space Agency (ESA) uses an engine to perform tests in the Ground Segment infrastructure, specially the Operational Simulator. This engine uses many different tools to ensure the development of regression testing infrastructure and these tests perform black-box testing to the C++ simulator implementation. VST (VisionSpace Technologies) is one of the companies that provides these services to ESA and they need a tool to infer automatically tests from the existing C++ code, instead of writing manually scripts to perform tests. With this motivation in mind, this paper explores automatic testing approaches and tools in order to propose a system that satisfies VST needs

    Automated Generation of Unit Tests from UML Activity Diagrams using the AMPL Interface for Constraint Solvers

    Get PDF
    I, Felix Kurth, declare that I have authored this thesis independently, that I have not used other than the declared sources / resources, and that I have explicitly marked all material which has been quoted either literally or by content from the used sources. Neither this thesis nor any other similar work has been previously submitted to any examination board

    A Comparison of State-Based Modelling Tools for Model Validation

    Get PDF
    In model-based testing, one of the biggest decisions taken before modelling is the modelling language and the model analysis tool to be used to model the system under investigation. UML, Alloy and Z are examples of popular state-based modelling languages. In the literature, there has been research about the similarities and the differences between modelling languages. However, we believe that, in addition to recognising the expressive power of modelling languages, it is crucial to detect the capabilities and the weaknesses of analysis tools that parse and analyse models written in these languages. In order to explore this area, we have chosen four model analysis tools: USE, Alloy Analyzer, ZLive and ProZ and observed how modelling and validation stages of MBT are handled by these tools for the same system. Through this experiment, we not only concretise the tasks that form the modelling and validation stages of MBT process, but also reveal how efficiently these tasks are carried out in different tools

    Automatically Discovering Hidden Transformation Chaining Constraints

    Get PDF
    Model transformations operate on models conforming to precisely defined metamodels. Consequently, it often seems relatively easy to chain them: the output of a transformation may be given as input to a second one if metamodels match. However, this simple rule has some obvious limitations. For instance, a transformation may only use a subset of a metamodel. Therefore, chaining transformations appropriately requires more information. We present here an approach that automatically discovers more detailed information about actual chaining constraints by statically analyzing transformations. The objective is to provide developers who decide to chain transformations with more data on which to base their choices. This approach has been successfully applied to the case of a library of endogenous transformations. They all have the same source and target metamodel but have some hidden chaining constraints. In such a case, the simple metamodel matching rule given above does not provide any useful information

    Specification-driven model transformation testing

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-013-0369-xTesting model transformations poses several challenges, among them the automatic generation of appropriate input test models and the specification of oracle functions. Most approaches for the generation of input models ensure a certain coverage of the source meta-model or the transformation implementation code, whereas oracle functions are frequently defined using query or graph languages. However, these two tasks are usually performed independently regardless of their common purpose, and sometimes, there is a gap between the properties exhibited by the generated input models and those considered by the transformations. Recently, we proposed a formal specification language for the declarative formulation of transformation properties (by means of invariants, pre-, and postconditions) from which we generated partial oracle functions used for transformation testing. Here, we extend the usage of our specification language for the automated generation of input test models by SAT solving. The testing process becomes more intentional because the generated models ensure a certain coverage of the transformation requirements. Moreover, we use the same specification to consistently derive both the input test models and the oracle functions. A set of experiments is presented, aimed at measuring the efficacy of our technique.We thank the referees for their useful comments. This work has been sponsored by the Spanish Ministry of Science and Innovation with project “Go-Lite” (TIN2011-24139), by the R&D program of the Community of Madrid with project “e- Madrid” (S2009/TIC-1650), and by the German Research Foundation (DFG) within the Reinhart Koselleck project (DR 287/23-1)

    Specification-driven test generation for model transformations

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-30476-7_3Proceedings of 5th International Conference, ICMT 2012, Prague, Czech Republic, May 28-29, 2012Testing model transformations poses several challenges, among them the automatic generation of appropriate input test models and the specification of oracle functions. Most approaches to the generation of input models ensure a certain level of source meta-model coverage, whereas the oracle functions are frequently defined using query or graph languages. Both tasks are usually performed independently regardless their common purpose, and sometimes there is a gap between the properties exhibited by the generated input models and those demanded to the transformations (as given by the oracles). Recently, we proposed a formal specification language for the declarative formulation of transformation properties (invariants, pre- and postconditions) from which we generated partial oracle functions that facilitate testing of the transformations. Here we extend the usage of our specification language for the automated generation of input test models by constraint solving. The testing process becomes more intentional because the generated models ensure a certain coverage of the interesting properties of the transformation. Moreover, we use the same specification to consistently derive both the input test models and the oracle functions.Work funded by the Spanish Ministry of Economy and Competitivity (TIN2011-24139) and by the R&D programme of Madrid Region (S2009/TIC-1650

    Lightweight String Reasoning in Model Finding

    Get PDF
    International audienceModels play a key role in assuring software quality in the model-driven approach. Precise models usually require the definition of well-formedness rules to specify constraints that cannot be expressed graphically. The Object Constraint Language (OCL) is a de-facto standard to define such rules. Techniques that check the satisfiability of such models and find corresponding instances of them are important in various activities, such as model-based testing and validation. Several tools for these activities have been developed, but to our knowledge, none of them supports OCL string operations on scale that is sufficient for, e.g., model-based testing. As, in contrast, many industrial models do contain such operations, there is evidently a gap. We present a lightweight solver that is specifically tailored to generate large solutions for tractable string constraints in model finding, and that is suitable for directly express the main operations of the OCL datatype String. It is based on constraint logic programming (CLP) and constraint handling rules (CHR), and can be seamlessly combined with other constraint solvers in CLP. We have integrated our solver into the EMFtoCSP model finder, and we show that our implementation efficiently solves several common string constraints on a large instances

    Executing Underspecified OCL Operation Contracts with a SAT Solver

    Get PDF
    Executing formal operation contracts is an important technique for requirements validation and rapid prototyping. Current approaches require additional guidance from the user or exhibit poor performance for underspecified contracts that describe the operation results non-constructively. We present an efficient and fully automatic approach to executing OCL operation contracts which uses a satisfiability (SAT) solver. The operation contract is translated to an arithmetic formula with bounded quantifiers and later to a satisfiability problem. Based on the system state in which the operation is called and the arguments to the operation, an off-the-shelf SAT solver computes a new state that satisfies the postconditions of the operation. An effort is made to keep the changes to the system state as small as possible. We present a tool for generating Java method bodies for operations specified with OCL. The efficiency of our method is confirmed by a comparison with existing approaches
    corecore