123 research outputs found

    On the role and opportunities in teamwork design for advanced multi-robot search systems

    Get PDF
    Intelligent robotic systems are becoming ever more present in our lives across a multitude of domains such as industry, transportation, agriculture, security, healthcare and even education. Such systems enable humans to focus on the interesting and sophisticated tasks while robots accomplish tasks that are either too tedious, routine or potentially dangerous for humans to do. Recent advances in perception technologies and accompanying hardware, mainly attributed to rapid advancements in the deep-learning ecosystem, enable the deployment of robotic systems equipped with onboard sensors as well as the computational power to perform autonomous reasoning and decision making online. While there has been significant progress in expanding the capabilities of single and multi-robot systems during the last decades across a multitude of domains and applications, there are still many promising areas for research that can advance the state of cooperative searching systems that employ multiple robots. In this article, several prospective avenues of research in teamwork cooperation with considerable potential for advancement of multi-robot search systems will be visited and discussed. In previous works we have shown that multi-agent search tasks can greatly benefit from intelligent cooperation between team members and can achieve performance close to the theoretical optimum. The techniques applied can be used in a variety of domains including planning against adversarial opponents, control of forest fires and coordinating search-and-rescue missions. The state-of-the-art on methods of multi-robot search across several selected domains of application is explained, highlighting the pros and cons of each method, providing an up-to-date view on the current state of the domains and their future challenges

    Counter-intuitive prey strategies against predators with finite budget in a search game : protection heterogeneity among sites matters more than their number

    Get PDF
    International audienceCombining the search and pursuit aspects of predator–prey interactions into a single game, where the payoff to the Searcher (predator) is the probability of finding and capturing the Hider (prey) within a fixed number of searches was proposed by Gal and Casas ( J. R. Soc. Interface 11 , 20140062 ( doi:10.1098/rsif.2014.0062 )). Subsequent models allowed the predator to continue its search (in another ‘round’) if the prey was found but escaped the chase. However, it is unrealistic to allow this pattern of prey relocation to go on forever, so here we introduce a limit of the total number of searches, in all ‘rounds’, that the predator can carry out. We show how habitat structural complexity affects the mean time until capture: the quality of the location with the lowest capture probability matters more than the number of hiding locations. Moreover, we observed that the parameter space defined by the capture probabilities in each location and the budget of the predator can be divided into distinct domains, defining whether the prey ought to play with pure or mixed hiding strategies

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper

    Play Among Books

    Get PDF
    How does coding change the way we think about architecture? Miro Roman and his AI Alice_ch3n81 develop a playful scenario in which they propose coding as the new literacy of information. They convey knowledge in the form of a project model that links the fields of architecture and information through two interwoven narrative strands in an “infinite flow” of real books

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Process of stop-motion and motion graphics animation for The Amazing European Bison Journey clip

    Get PDF
    The Amazing European Bison Journey prototype clip shows an extract of the timeline of this species coming back from their near disappearance. It starts in the BiaƂowieĆŒa Forest in Poland in 1919, when they went extinct in the wild. And runs up to 2013 in Zuid-Kennemerland in the Nether-lands, where an initial herd of 6 European bison, translocated in 2007 from Poland, had quadrupled to 24 individuals living in the Dutch dunes. The process of production of this animated documentary is de-scribed starting with the ecological research required. Review of literature, contact with specialist scientists and visitation of Poland and the Netherlands are some of the starting points of the process. Subsequently, the preparation for the animation is described. The initial storyboard was constructed out of the preceding ecological research. Afterwards, the development of the script and its respective narration was recorded. The construction of the sets, props and characters is described; specific emphasis is given to the construction of the European bison. Finally, the assemblage of all the elements is explained and the final results of the animation prototype are revealed. This animation forms part of a broader project, which has research into the effectiveness of a set of visual communication formats at its core, and uses rewilding as its ecological platform. A range of animations, infographics and virtual reality pieces will be eventually compared for their effectiveness using several communication research tools

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space
    • 

    corecore